Background: Magnetic particle imaging (MPI) is a novel radiation-free tomographic imaging method that provides a background-free, signal attenuation-free, direct quantification of the spatial distribution of superparamagnetic iron-oxide nanoparticles (SPIONs) with high temporal resolution (milliseconds), high spatial resolution (<1 mm), and extreme sensitivity (μmol). The technique is based on nonlinear magnetization of the SPIONs when exposed to an oscillating magnetic field. MPI was first described in 2001. Since then, the technique has been applied to experimental imaging of diseases affecting different organs in the human body. The aim of this paper is to review the potential applications of MPI in the field of neurosurgery.
Methods: A nonsystematic review of the existing literature on the use of MPI in neurosurgical diseases was performed.
Results: MPI has been used for the detection of locoregional invasion of brain tumors, tracking, and monitoring the viability of neural stem cells implanted for neuroregenerative purposes, diagnosis of cerebral ischemia, and diagnosis and morphofunctional assessment of brain aneurysms.
Conclusions: MPI is at a preclinical stage. In the future, human-sized MPI scanners, along with the optimal toxicity profile of SPIONs will allow diagnostic applications in neurosurgical diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wneu.2019.01.180 | DOI Listing |
Phys Chem Chem Phys
January 2025
Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, USA.
Photosynthetic reaction center proteins (RCs) provide ideal model systems for studying quantum entanglement between multiple spins, a quantum mechanical phenomenon wherein the properties of the entangled particles become inherently correlated. Following light-generated sequential electron transfer, RCs generate spin-correlated radical pairs (SCRPs), also referred to as entangled spin qubit (radical) pairs (SQPs). Understanding and controlling coherence mechanisms in SCRP/SQPs is important for realizing practical uses of electron spin qubits in quantum sensing applications.
View Article and Find Full Text PDFDalton Trans
January 2025
Chemistry Division, Bhabha Atomic Research, Centre, Mumbai 400085, India.
Magnetic field-dependent magnetization of highly crystalline FeO magnetic nanoparticles has been carried out to understand surface canting structures at low and room temperatures. The exchange bias () values of ∼18 to 27 Oe at 300 K for three samples prepared from different precursors are observed; and a decrease in value is obtained when the samples are measured at 5 K. However, with a decrease in temperature, coercivity () increases.
View Article and Find Full Text PDFBiotechnol Rep (Amst)
March 2025
Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
Unlabelled: Ongoing research in biosensor technologies has led to advanced functional materials for healthcare diagnostics, and bacteriophages (phages), demonstrating exceptional utility due to their high specificity, accuracy, rapid, label-free, and wireless detection capabilities with minimal false-positive results. Phage-based-pathogen-detecting biosensors (PBPDBs) include surface plasmon resonance (SPR) biosensors, magnetoelastic (ME), electrochemical, and quartz crystal microbalance (QCM) biosensors. Commonly used substrates for PBPDBs are gold, silicon, glass, carbon-based materials, magnetic particles, and quantum dots.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST) PO Box 16846-13114 Tehran Iran
A magnetic-biopolymer composite of carboxymethyl cellulose (CMC), designated as FeO@CMC, was synthesized featuring remarkable stability and an active surface with a green biosynthetic method. This composite was engineered to serve as a substrate for stabilizing silver nanoparticles (Ag NPs) with enhanced functional properties. The catalytic efficacy of the nanocatalyst, incorporating Ag NPs at concentrations of 3%, 7%, and 10%, was evaluated for the reduction of the toxic compound 4-nitrophenol to the beneficial 4-aminophenol.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt. Electronic address:
Indoprofen (INP) comprises two enantiomers, R- and S-, whose high pharmacological efficacy is realized only in the case of the separated enantiomers. A newly synthesized poly(acrylonitrile-co-divinylbenzene) (PANB)-based sorbent with selective affinity to the S-enantiomer of INP was applied to separate INP racemate. The synthesis was performed by suspension polymerization with low-crosslinked PANB microparticles and by reaction of the inserted nitriles with 1-amino-1H-pyrrole-2,5‑dione (Ma-NH).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!