Background: Clear cell renal cell carcinoma (ccRCC) represents a highly vascularized aggressive kidney cancer. Due to ccRCC chemotherapy resistance, antiangiogenesis is one of the most innovative targeted therapies for this tumor. The tumor microenvironment exerts important roles in tumor growth, angiogenesis, and metastatic escape.

Materials And Methods: In this study, we investigated the composition of tumor cell microenvironment including mast cells, macrophages, and microvascular density in ccRCC tumor tissues collected from patients who underwent nephrectomy treated or not with bevacizumab as neoadjuvant therapy before surgery.

Results: The results of this study indicate that bevacizumab-treated ccRCC samples present reduced microvascular density as well as a lower number of CD68-positive macrophages and tryptase-positive mast cells in comparison with the untreated patients.

Conclusions: It follows that the antiangiogenic activity of bevacizumab may be due to a direct effect on angiogenic cytokines released by tumor cells and an indirect effect on the release of pro-angiogenic factors by inflammatory stromal cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.urolonc.2019.01.025DOI Listing

Publication Analysis

Top Keywords

microvascular density
12
mast cells
12
clear cell
8
cell renal
8
tumor
6
cells
5
density macrophages
4
macrophages mast
4
cells human
4
human clear
4

Similar Publications

A pilot study was conducted to investigate the effect of four weeks of creatine monohydrate (CrM) on vascular endothelial function in older adults. In a double-blind, randomized crossover trial, twelve sedentary, healthy older adults were allocated to either the CrM or placebo (PL) group for four weeks, at a dose of 4 × 5 g/day for 5 days, followed by 1 × 5 g/day for 23 days. Macrovascular function (flow-mediated dilation [FMD%], normalized FMD%, brachial-ankle pulse wave velocity [baPWV], pulse wave analysis [PWA]), microvascular function (microvascular reperfusion rate [% StO/sec]), and biomarkers of vascular function (tetrahydrobiopterin [BH], malondialdehyde [MDA], oxidized low-density lipoprotein [oxLDL], glucose, lipids) were assessed pre- and post-supplementation with a four-week washout period.

View Article and Find Full Text PDF

Background: COVID-19 patients exhibit higher incidence of thrombosis in arteries and veins, including those in lungs. Vasa vasorum, which support large blood vessels, have shown involvement in these pathologic processes.

Methods: To further explore the extent of microvascular damage caused by COVID-19 infection, we examined resected main, right, or left pulmonary artery specimens from patients undergoing bilateral lung transplantation for COVID-19- or non-COVID-19-induced pulmonary fibrosis compared with organ donors by histologic and immunohistologic analyses.

View Article and Find Full Text PDF

Background: Benign and malignant breast tumors differ in their microvasculature morphology and distribution. Histologic biomarkers of malignant breast tumors are also correlated with the microvasculature. There is a lack of imaging technology for evaluating the microvasculature.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer is a particularly aggressive type of breast cancer that is closely associated with abnormal vascularization within the tumor. However, traditional anti-VEGF therapies and other treatments have limited efficacy. Tumor-associated macrophages (TAMs) induce and regulate tumor angiogenesis.

View Article and Find Full Text PDF

Background: Vascular endothelial cell-derived exosomes are thought to mediate disease progression by regulating macrophage polarization. However, its mechanism in diabetes mellitus (DM)-related atherosclerosis (AS) progress is unclear.

Methods: High-glucose (HG) and oxLDL were used to induce human cardiac microvascular endothelial cells (HCMECs) to mimic DM-related AS model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!