The grouping of data in bursts, also referred to as clusters, spikes or clumps, is a common phenomenon in stochastic sampling. There have been several reports that suggest that in NMR, the presence of such bursts is beneficial to spectral reconstruction where data are sampled nonuniformly. In this work, we seek to define a mode of sampling that produces bursts of randomly distributed data in a controlled manner. An algorithm is described for achieving this where the burst length and its uniformity is controlled - we refer to this type of sampling mode as clustered sampling. Measures are introduced for assessing the "burstiness" of nonuniformly sampled data in multiple dimensions and properties of the point-spread-function of these schedules are assessed. The clustered sampling method is applied to samples drawn from an exponentially weighted distribution either distributed randomly or pseudo-randomly by use of a jittering algorithm. The results reveal that bursts introduce characteristic sampling artifacts that are shifted to low frequencies (red shifted), with respect to the signal frequency, and that they produce artifact-reduced regions at frequencies related to the burst length. This observation is contrary to that observed for sampling methods that seek to evenly distribute NUS data, such as jittered or Poisson sampling. Extensive evaluation of simulated data with comparable inherent sensitivity, reveals that at high sampling coverage (25% in 1D), the distribution of the data has little impact on common spectral quality measures. Application of the introduced clustered sampling method to an experimental 3D NOESY experiment showed results consistent with that found for the simulated 1D data. However, in the extremes of very sparse sampling, the results suggest that there may be some advantages associated with incorporation of bursts in nonuniform sampling. The tools and theory presented will serve as a starting point to further explore this novel mode of sampling in NMR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmr.2019.01.014 | DOI Listing |
Environ Sci Technol
January 2025
Geomicrobiology, Department of Geosciences, University of Tübingen, Tübingen 72076, Germany.
Defects are common features in hematite that arise from deviations from the perfect mineral crystal structure. Vacancy defects have been shown to significantly enhance arsenate (As) immobilization by hematite. However, the contributions from vacancy defects on different exposed facets of hematite have not been fully quantified.
View Article and Find Full Text PDFS Afr J Surg
December 2024
Department of Surgery, Tygerberg Hospital, Stellenbosch University, South Africa.
Background: COVID-19 was first identified in Wuhan, China, in December 2019, where it spread over a wide geographic area until it reached the status of a pandemic in 2020. We postulated that patients who were diagnosed with incidental COVID-19, and underwent surgery, did not have a worse outcome due to the COVID-19 virus compared to their counterparts who did not have the virus.
Methods: This retrospective study included surgical patients (COVID-19 incidentals and COVID-19 negatives) who were admitted to the surgical intensive care unit (SICU) at Tygerberg Academic Hospital between 1 May 2020 and 31 December 2021.
Sci Prog
January 2025
Department of Environmental and Industrial Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia.
Objective: Heavy metal pollution is one of the more recent problems of environmental degradation caused by rapid industrialization and human activity. The objective of this study was to isolate, screen, and characterize heavy metal-resistant bacteria from solid waste disposal sites.
Methods: In this study, a total of 18 soil samples were randomly selected from mechanical sites, metal workshops, and agricultural land that received wastewater irrigation.
Lab Chip
January 2025
Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Rome, Italy.
Microfluidic impedance cytometry (MIC) is a label-free technique that characterizes individual flowing particles/cells based on their interaction with a multifrequency electric field. The technique has been successfully applied in different scenarios including life-science research, diagnostics, and environmental monitoring. The aim of this review is to illustrate the fascinating opportunities enabled by the integration of MIC with other microfluidic tools.
View Article and Find Full Text PDFAnal Chem
January 2025
Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333ZA, Netherlands.
Thanks to the plummeting costs of continuously evolving omics analytical platforms, research centers collect multiomics data more routinely. They are, however, confronted with the lack of a versatile software solution to harmoniously analyze single-omics and interpret multiomics data. We have developed iSODA, a web-based application for the analysis of single- and multiomics data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!