The effects of a commercial glyphosate formulation on the oxidative stress parameters and morphology (including the ultrastructure) of the phytoplanktonic green microalga Scenedesmus vacuolatus were evaluated. After 96 h of exposure to increasing herbicide concentrations (0, 4, 6, 8 mg L active ingredient) with the addition of alkyl aryl polyglycol ether surfactant, the growth of the cultures decreased (96 h-IC50- 4.90 mg L) and metabolic and morphology alterations were observed. Significant increases in cellular volume (103-353%) and dry weight (105%) and a significant decrease in pigment content (41-48%) were detected. Oxidative stress parameters were significantly affected, showing an increase in the reactive oxygen species (ROS) and reduced glutathione (GSH) contents, oxidative damage to lipids and proteins and a decrease in the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) and the detoxifying enzyme glutathione-S-transferase (GST). Cells exposed to glyphosate formulation were larger and showed an increase in vacuole size, bleaching, cell wall thickening and alteration of the stacking pattern of thylakoids. The results of this study showed the participation of oxidative stress in the mechanism of toxic action of the commercial glyphosate formulation on S. vacuolatus and the relation between the biochemical, morphological and ultrastructure alterations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2019.01.083 | DOI Listing |
Environ Sci Pollut Res Int
December 2024
Laboratório de Ecologia e Conservação, Universidade Federal da Fronteira Sul, Campus Erechim, RS 135 - km 72, nº 200, Erechim, RS, Brazil.
Atrazine and glyphosate are considered some of the main pollutants for aquatic ecosystems, directly and indirectly affecting non-target organisms, such as amphibians. This study aimed to evaluate the sublethal effects of different concentrations of atrazine-based herbicide (ABH) and glyphosate-based herbicide (GBH) commercial formulations, both individually and in a mixture, through toxicity tests on the larval stage of Boana faber. Tadpoles were exposed to concentrations of ABH (2, 9.
View Article and Find Full Text PDFEnviron Toxicol Pharmacol
December 2024
Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Entomologia applicata. Università degli Studi di Catania, Via S. Sofia 100, Catania 95123, Italy.
Ground-nesting solitary bees are the most abundant bee species in the xeric areas of the world, but the effects of agrochemicals on them have been little studied. Herein, we evaluated the topical toxicity of an insecticide, a herbicide, and an essential oil on Mediterranean ground-nesting bees (Andrena impunctata, A. nigroolivacea, A.
View Article and Find Full Text PDFInt J Cancer
December 2024
Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
Glyphosate [N-(phosphonomethyl) glycine], a systemic herbicide, is used globally (825 million kg/year) in 750+ formulations. The International Agency for Research on Cancer classified glyphosate is a probable human carcinogen (Group 2A), but epidemiological studies have been lacking for its association with liver cancer and chronic liver disease. We analyzed urine specimens from 591 patients with newly diagnosed liver cancer, chronic liver disease (CLD), and healthy individuals from five different medical centers between 2011 to 2016 in Thailand.
View Article and Find Full Text PDFSci Total Environ
December 2024
Laboratório de Biologia da Reprodução, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil.
J Hazard Mater
December 2024
Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.
Pesticide poisoning constantly threatens bees as they forage for resources in pesticide-treated crops. This poisoning requires thorough investigation to identify its causes, underscoring the importance of reliable pesticide detection methods for bee monitoring. Infrared spectroscopy provides reflectance data across hundreds of spectral bands (hyperspectral reflectance), presumably enabling the efficient classification of pesticide contamination in bee carcasses using artificial intelligence (AI) models, such as machine learning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!