A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Utilizing photosensitizing and radiosensitizing properties of TiO-based mitoxantrone imprinted nanopolymer in fibrosarcoma and melanoma cells. | LitMetric

Background: Some materials such as TiO display a luminescence property when exposed to X-ray radiation. Therefore, a proper photosensitizer can induce photodynamic effects by absorbing the emitted photons from these materials during radiotherapy. In this way, the problem of limited photo- penetration depth in photodynamic therapy is resolved. In this paper, following the production of a nanopolymer containing TiO2 cores and imprinted for mitoxantron (MIP), the possibility of utilizing its optical and radio properties on two lines of cancer cells were studied.

Methods: Mitoxantron (MX) was selected as the photosensitizer. The emission spectrum of the nanopolymers synthesized with/without MX was recorded during excitation by 6 MV  X-rays. Also, the fluorescence signal of hydroxyl radicals produced into terephthalic acid medium by the nanopolymers were recorded during X irradiation. The percentage of cell survival following irradiation by X-rays was determined for various concentrations of drug agents by MTT assay. The synergistic index and IC were calculated to compare the findings.

Results: The emission spectrum of the nanopolymer reloaded with MX during X-ray irradiation indicated a considerable decline in comparison with the nanopolymer without MX. The level of free radicals produced by nanopolymer was significantly increased during irradiation with X-rays. The highest mean of synergistic indexes was observed in MIP.

Conclusion: The higher level of hydroxyl free radicals in MIP and lower cell viability in the DFW cell line as well as enhanced treatment efficiency confirm the hypothesis regarding the production of photodynamic effects by synthesized nanopolymer during radiotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pdpdt.2019.02.006DOI Listing

Publication Analysis

Top Keywords

photodynamic effects
8
emission spectrum
8
radicals produced
8
irradiation x-rays
8
free radicals
8
nanopolymer
6
utilizing photosensitizing
4
photosensitizing radiosensitizing
4
radiosensitizing properties
4
properties tio-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!