High resolution NMR spectroscopy is a seminal method in modern structural biology to obtain insights into proteins' structure, dynamics and function at dilute condition as well as in a cell-like environment or even intracellularly. Usually, H, N or C nuclei are predominantly used for the characterization of the protein of interest. These measurements are limited due to the wealth of chemical shifts and background signals arising from all molecules present in the NMR test tube. On top of that, the protein under study has to be isotopically enriched in nitrogen and/or carbon nuclei enabling to overcome the inherently low natural abundance of C and N NMR active isotopes. In this way switching to F NMR spectroscopy strongly reduces the total amount of signals seen in an NMR spectrum as it turns off background signals and is for this reason extremely attractive for highly-resolved investigations of proteins performance measured directly in cells or in a cell-like environment. Here we show the effective expression and purification of cold shock protein B from Bacillus subtilis (BsCspB) using fluorine labelled phenylalanine or fluorine labelled tryptophan residues. We reveal that fluorine labelled BsCspB represents the same fold on a secondary as tertiary level as seen for the wild type protein independent of the labelling position illuminating the soft character of fluorine insertion. This experimental setup of targeted fluorine labelling sets a profound ground for a broad range of highly-resolved F NMR applications to be performed in a complex cellular environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pep.2019.02.006 | DOI Listing |
Elife
December 2024
Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
Identifying target proteins for bioactive molecules is essential for understanding their mechanisms, developing improved derivatives, and minimizing off-target effects. Despite advances in target identification (target-ID) technologies, significant challenges remain, impeding drug development. Most target-ID methods use cell lysates, but maintaining an intact cellular context is vital for capturing specific drug-protein interactions, such as those with transient protein complexes and membrane-associated proteins.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China.
Objective: To optimize the automated radiosynthesis of the purinergic ion channel receptor 7 (P2X7R) imaging agent F-JNJ64413739 and evaluate its potential for brain imaging in osteoporotic model rats.
Methods: A more electron-deficient nitropyridine was employed as the labeling precursor to facilitate the F-labeling. The radiosynthesis was conducted on an AllinOne synthesis module, and followed by purification via high-performance liquid chromatography (HPLC).
Br J Cancer
December 2024
PET/CT Center, The First Affiliated Hospital of Xi' an Jiaotong University, Xi' an, China.
Background: The diagnostic utility of prostate biopsy is limited for prostate cancer (PCa) in the prostate-specific antigen (PSA) grey zone. This study aims to evaluate the diagnostic performance of multiparametric magnetic resonance imaging (mpMRI) and prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA PET/CT) for PSA grey zone PCa and clinically significant PCa (csPCa).
Methods: A total of 82 patients with PSA levels ranging from 4 to 10 ng/mL who underwent F-PSMA-1007 PET/CT, mpMRI, and prostate biopsy were prospectively enrolled.
Phys Chem Chem Phys
December 2024
Research Group ESR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
F electron-nuclear double resonance (ENDOR) spectroscopy is emerging as a method of choice to determine molecular distances in biomolecules in the angstrom to nanometer range. However, line broadening mechanisms in F ENDOR spectra can obscure the detected spin-dipolar coupling that encodes the distance information, thus limiting the resolution and accessible distance range. So far, the origin of these mechanisms has not been understood.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States.
Small GTPases (smG) are a 150-member family of proteins, comprising five subfamilies: Ras, Rho, Arf, Rab, and Ran-GTPases. These proteins function as molecular switches, toggling between two distinct nucleotide-bound states. Using traditional multidimensional heteronuclear NMR, even for single smGs, numerous experiments, high protein concentrations, expensive isotope labeling, and long analysis times are necessary.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!