We explore the potential role of the endothelial lining of uteroplacental arteries in the pathogenesis of preeclampsia, a severe pregnancy disorder characterized by incomplete invasion of the uterine vasculature by extravillous trophoblast and angiogenic imbalance. In normal pregnancy, the endothelium disappears progressively from the uteroplacental arteries and is replaced by trophoblast and deposition of fibrofibrinoid structure, underpinning the so-called physiological transformation of uterine spiral arteries. We hypothesize that partial persistence of the endothelium, albeit injured, initiates a chain of events leading to the emergence of preeclampsia in 3 sequential stages. The first stage results in retention of the endothelium in uteroplacental arteries secondary to incomplete physiological transformation of the vessels. Consequently, the uteroplacental vessels are reactive to pathological cues, which drives local arteriopathy. The second stage starts with progressive reduction in uteroplacental blood flow, generating oxidative stress in the whole placenta, and heightened maternal inflammation in response to circulating trophoblastic debris. In the third stage, generalized endotheliosis causes systemic angiogenic imbalance, hypertension, and other clinical manifestation of preeclampsia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajog.2019.01.239 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!