The push and pull of dopamine in cue-reward learning.

Learn Behav

Department of Anesthesiology and Perioperative Care and Irvine Center for Addiction Neuroscience, University of California, Irvine, 837 Health Science Road, 3111GNRF, Irvine, CA, 92697, USA.

Published: December 2019

A recent study by Saunders, Richard, Margolis, and Janak (2018) shows that there is a great deal left to learn about what different mesotelencephalic dopamine circuits contribute to learning about the motivational significance of reward-related cues. Their findings suggest that nigrostriatal and mesolimbic dopamine pathways support distinct reinforcement processes that independently push and pull animals toward their goals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687573PMC
http://dx.doi.org/10.3758/s13420-018-0370-xDOI Listing

Publication Analysis

Top Keywords

push pull
8
pull dopamine
4
dopamine cue-reward
4
cue-reward learning
4
learning study
4
study saunders
4
saunders richard
4
richard margolis
4
margolis janak
4
janak 2018
4

Similar Publications

We aimed to investigate whether a linear relationship exists between swimming velocity and vertical body position for each stroke phase in front crawl, and to determine whether there are differences in the velocity effect among the stroke phases. Eleven male swimmers performed a 15 m front crawl at various swimming velocities. The whole-body centre of mass (CoM) was estimated from individual digital human models using inverse kinematics.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a powerful strategy for tumor therapy with noninvasiveness and desirable efficacy. However, the phototoxicity of photosensitizer after the post-PDT is the major obstacle limiting the clinic applications. Herein, a nitric oxide (NO)-activatable photosensitizer is reported with turn-on PDT behavior and endoplasmic reticulum (ER) targeting ability for precise tumor therapy.

View Article and Find Full Text PDF

Interaction Between Concrete and FRP Laminate in Structural Members Composed of Reused Wind Turbine Blades Filled with Concrete.

Materials (Basel)

December 2024

Department of Building Structures and Structural Mechanics, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland.

The lifecycle of wind turbine blades is around 20-25 years. This makes studies on the reuse of dismantled blades an urgent need for our generation; however, their recycling is very difficult due to the specific makeup of their composite material. In this study, the authors determined a concept for the reuse of turbine blade sections filled with concrete for geotechnical structures, retaining the walls, piles, or parts of their foundations.

View Article and Find Full Text PDF

Maize productivity has remained low and has worsened in the wake of a changing climate, resulting in new invasive pests, with pests that were earlier designated as minor becoming major and with pathogens being transported by pests and/or entering their feeding sites. A study was conducted in 2021 in the Kisumu and Makueni counties, Kenya, to determine how different maize cropping systems affect insect diversity, insect damage to maize, and insects' ability to spread mycotoxigenic fungi in pre-harvest maize. The field experiments used a randomized complete block design, with the four treatments being maize monocrop, maize intercropped with beans, maize-bean intercrop with the addition of at planting, and push-pull technology.

View Article and Find Full Text PDF

Charge Regulation-Enhanced Type I Photosensitizer-Loaded Hydrogel Dressing for Hypoxic Bacterial Inhibition and Biofilm Elimination.

ACS Nano

January 2025

State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.

Biofilm-induced chronic bacterial infections represent a significant challenge in modern medicine due to their resistance to conventional antibiotic treatments. Although photodynamic therapy (PDT) has emerged as a promising antibiotic-free antibacterial strategy, the hypoxic condition within biofilms and the lack of an effective local drug delivery system have limited the clinical effectiveness of photosensitizer (PS) agents. Herein, we propose a type of charge regulation-enhanced type I PS-loaded hydrogel dressing for treating biofilm infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!