AI Article Synopsis

  • The processing of N-glycans in the medial-Golgi depends on the transport of UDP-N-acetylglucosamine (UDP-GlcNAc) by the SLC35A3 transporter and the action of several N-acetyl-glucosaminyltransferases (MGAT1-MGAT5) adding GlcNAc to mannoses.
  • Previous studies suggest that MGATs and nucleotide sugar transporters (NSTs) form higher order complexes in the Golgi membranes.
  • This research reveals specific interactions among MGATs and NSTs, highlighting distinct molecular assemblies with MAN2A2 as a central hub and novel ternary complexes, indicating a cooperative mechanism for efficient N-glycan synthesis.

Article Abstract

Branching and processing of N-glycans in the medial-Golgi rely both on the transport of the donor UDP-N-acetylglucosamine (UDP-GlcNAc) to the Golgi lumen by the SLC35A3 nucleotide sugar transporter (NST) as well as on the addition of the GlcNAc residue to terminal mannoses in nascent N-glycans by several linkage-specific N-acetyl-glucosaminyltransferases (MGAT1-MGAT5). Previous data indicate that the MGATs and NSTs both form higher order assemblies in the Golgi membranes. Here, we investigate their specific and mutual interactions using high-throughput FRET- and BiFC-based interaction screens. We show that MGAT1, MGAT2, MGAT3, MGAT4B (but not MGAT5) and Golgi alpha-mannosidase IIX (MAN2A2) form several distinct molecular assemblies with each other and that the MAN2A2 acts as a central hub for the interactions. Similar assemblies were also detected between the NSTs SLC35A2, SLC35A3, and SLC35A4. Using in vivo BiFC-based FRET interaction screens, we also identified novel ternary complexes between the MGATs themselves or between the MGATs and the NSTs. These findings suggest that the MGATs and the NSTs self-assemble into multi-enzyme/multi-transporter complexes in the Golgi membranes in vivo to facilitate efficient synthesis of complex N-glycans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6453868PMC
http://dx.doi.org/10.1007/s00018-019-03032-5DOI Listing

Publication Analysis

Top Keywords

golgi membranes
12
mgats nsts
12
nucleotide sugar
8
assemblies golgi
8
membranes vivo
8
interaction screens
8
golgi
5
n-acetylglucosaminyltransferases nucleotide
4
sugar transporters
4
transporters form
4

Similar Publications

Palmitoylation-mediated NLRP3 inflammasome activation in teleosts highlights evolutionary divergence in immune regulation.

Zool Res

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.

NLRP3 inflammasome activation is pivotal for cytokine secretion and pyroptosis in response to diverse stimuli, playing a crucial role in innate immunity. While extensively studied in mammals, the regulatory mechanisms governing NLRP3 activation in non-mammalian vertebrates remain largely unexplored. Teleosts, as basal vertebrates, represent an ideal model for exploring the evolutionary trajectory of inflammasome regulation.

View Article and Find Full Text PDF

The present study explores the conformational dynamics of the membrane protein of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) within the Endoplasmic Reticulum-Golgi Intermediate Compartment (ERGIC) complex using an all-atomistic molecular dynamics simulation approach. Significant structural changes were observed in the N-terminal, C-terminal, transmembrane, and beta-sheet sandwich domains of the MERS-CoV membrane protein. This study also highlights the structural similarities between the MERS-CoV and the SARS-CoV-2 membrane proteins, particularly in how both exhibit a distinct kink in the transmembrane helix caused by aromatic residue-lipid interactions.

View Article and Find Full Text PDF

Sterol regulatory element binding proteins (SREBPs) are transcription factors that reside in the endoplasmic reticulum (ER) membrane as inactive precursors. To be active, SREBPs are translocated to the Golgi where the transcriptionally active N-terminus is cleaved and released to the nucleus to regulate gene expression. Nuclear SREBP levels can be determined by immunoblot analysis; however, this method can only determine the steady-state levels of nuclear SREBPs and does not capture the actual status of activation.

View Article and Find Full Text PDF

Rg1 improves Alzheimer's disease by regulating mitochondrial dynamics mediated by the AMPK/Drp1 signaling pathway.

J Ethnopharmacol

December 2024

Hubei University of Chinese Medicine, Basic Medical College, Wuhan, Hubei, 430070, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Wuhan, Hubei, 430070, China; Hubei Shizhen Laboratory, Wuhan, Hubei, 430070, China. Electronic address:

Ethnopharmacological Relevance: Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by a complex pathogenesis that includes Aβ deposition, abnormal phosphorylation of tau protein, chronic neuroinflammation, and mitochondrial dysfunction. In traditional medicine, ginseng is revered as the 'king of herbs'. Ginseng has the effects of greatly tonifying vital energy, strengthening the spleen and benefiting the lungs, generating fluids and nourishing the blood, and calming the mind while enhancing intelligence.

View Article and Find Full Text PDF

SARS-CoV-2 membrane protein induces neurodegeneration via affecting Golgi-mitochondria interaction.

Transl Neurodegener

December 2024

Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421009, China.

Background: Neurological complications are a significant concern of Coronavirus Disease 2019 (COVID-19). However, the pathogenic mechanism of neurological symptoms associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is poorly understood.

Methods: We used Drosophila as a model to systematically analyze SARS-CoV-2 genes encoding structural and accessory proteins and identified the membrane protein (M) that disrupted mitochondrial functions in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!