Nitric oxide (NO) is a key regulator of endothelial cell and vascular function. The direct measurement of NO is challenging due to its short half-life, and as such surrogate measurements are typically used to approximate its relative concentrations. Here we demonstrate that ruthenium-based [Ru(bpy)(dabpy)] is a potent sensor for NO in its irreversible, NO-bound active form, [Ru(bpy)(T-bpy)]. Using spectrophotometry we established the sensor's ability to detect and measure soluble NO in a concentration-dependent manner in cell-free media. Endothelial cells cultured with acetylcholine or hydrogen peroxide to induce endogenous NO production showed modest increases of 7.3 ± 7.1% and 36.3 ± 25.0% respectively in fluorescence signal from baseline state, while addition of exogenous NO increased their fluorescence by 5.2-fold. The changes in fluorescence signal were proportionate and comparable against conventional NO assays. Rabbit blood samples immediately exposed to [Ru(bpy)(dabpy)] displayed 8-fold higher mean fluorescence, relative to blood without sensor. Approximately 14% of the observed signal was NO/NO adduct-specific. Optimal readings were obtained when sensor was added to freshly collected blood, remaining stable during subsequent freeze-thaw cycles. Clinical studies are now required to test the utility of [Ru(bpy)(dabpy)] as a sensor to detect changes in NO from human blood samples in cardiovascular health and disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6368587 | PMC |
http://dx.doi.org/10.1038/s41598-019-39123-3 | DOI Listing |
J Fluoresc
January 2025
Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat, Gujarat, 395007, India.
An easy-to-synthesize aggregation-induced emission (AIE) active Schiff base HNSA was obtained by condensing equimolar amount of 3-hydroxy-2-naphthohydrazide and salicylaldehyde. In pure DMSO, HNSA is non-fluorescent, but increasing the HEPES (HO, 10 mM, pH 7.4) fraction (f) ≥ 90% showed an intense green fluorescence with maximum fluorescence intensity at 515 nm.
View Article and Find Full Text PDFNanoscale
January 2025
James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
Neurodegenerative diseases, characterized by the progressive deterioration of neuronal function and structure, pose significant global public health and economic challenges. Brain-Derived Neurotrophic Factor (BDNF), a key regulator of neuroplasticity and neuronal survival, has emerged as a critical biomarker for various neurodegenerative and psychiatric disorders, including Alzheimer's disease. Traditional diagnostic methods, such as Enzyme-Linked Immunosorbent Assay (ELISA) and electrochemiluminescence (ECL) assays, face limitations in terms of sensitivity, stability, reproducibility, and cost-effectiveness.
View Article and Find Full Text PDFACS Sens
January 2025
State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China.
High selectivity and sensitivity sensing of HS gas play a decisive role in the early detection of sulfide solid-state battery failure. Herein, we construct the CsPbBr perovskite-based sensor that exhibits outstanding gas-sensing performance to HS at room temperature, including high selectivity, fast response/recovery speed (73.5/275.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
Aim: Somatostatin from pancreatic δ-cells is a paracrine regulator of insulin and glucagon secretion, but the release kinetics and whether secretion is altered in diabetes is unclear. This study aimed to improve understanding of somatostatin secretion by developing a tool for real-time detection of somatostatin release from individual pancreatic islets.
Methods: Reporter cells responding to somatostatin with cytoplasmic Ca concentration ([Ca]) changes were generated by co-expressing somatostatin receptor SSTR2, the G-protein Gα15 and a fluorescent Ca sensor in HeLa cells.
Anal Chem
January 2025
Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
The advancement of lanthanide fingerprint sensors characterized by targeted emission responses and low self-fluorescence interference for the detection of biothiols is of considerable importance for the early diagnosis and treatment of cancer. Herein, the lanthanide "personality function tailoring" HOF composite sensor array is designed for the specific discrimination of biothiols (GSH, Cys, and Hcy) based on the activation of various luminescent molecules, such as r-AuNCs/luminol via HOF surface proximity. Lumi-HOF@Ce serves as a versatile platform for catalyzing the oxidation of -phenylenediamine (OPD) to generate yellow fluorescent oligomers, accompanied by the fluorescence attenuation of luminol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!