Associations between chronic antigen stimulation, T cell dysfunction, and the expression of various inhibitory receptors are well characterized in several mouse and human systems. During chronic hepatitis B virus (HBV) infection (CHB), T cell responses are blunted with low frequencies of virus-specific T cells observed, making these parameters difficult to study. Here, using mass cytometry and a highly multiplexed combinatorial peptide-major histocompatibility complex (pMHC) tetramer strategy that allows for the detection of rare antigen-specific T cells, we simultaneously probed 484 unique HLA-A*1101-restricted epitopes spanning the entire HBV genome on T cells from patients at various stages of CHB. Numerous HBV-specific T cell populations were detected, validated, and profiled. T cells specific for two epitopes (HBV and HBV) displayed differing and complex heterogeneities that were associated with the disease progression, and the expression of inhibitory receptors on these cells was not linearly related with their extent of T cell dysfunction. For HBV-specific CD8 T cells, we found cellular markers associated with long-term memory, polyfunctionality, and the presence of several previously unidentified public TCR clones that correlated with viral control. Using high-dimensional trajectory analysis of these cellular phenotypes, a pseudo-time metric was constructed that fit with the status of viral infection in corresponding patients. This was validated in a longitudinal cohort of patients undergoing antiviral therapy. Our study uncovers complex relationships of inhibitory receptors between the profiles of antigen-specific T cells and the status of CHB with implications for new strategies of therapeutic intervention.

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciimmunol.aau6905DOI Listing

Publication Analysis

Top Keywords

inhibitory receptors
12
cells
8
virus-specific cells
8
chronic hepatitis
8
cell dysfunction
8
expression inhibitory
8
antigen-specific cells
8
multifactorial heterogeneity
4
heterogeneity virus-specific
4
cells association
4

Similar Publications

Computational insights into maternal environmental pollutants and folate pathway regulation.

Reprod Toxicol

December 2024

Department of Genomic Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India, 121102. Electronic address:

Exposure to environmental pollutants during pregnancy can adversely affect fetal growth and postnatal development. While numerous studies have explored the interaction between environmental toxic chemicals and the folate pathway, few have examined their inhibitory effects on key targets. This computational study identified 27 maternal environmental toxicants using the Comparative Toxicogenomics Database (CTD) and analyzed them to identify their targets.

View Article and Find Full Text PDF

Allopregnanolone (Allo) is a positive allosteric modulator of the GABA receptor, and amiloride (Ami) is a competitive antagonist of the GABA receptor. The purpose of this work was to study the combined effect of Allo and Ami on functional activity of GABA receptor. The GABA-induced chloride current (I) was measured in isolated Purkinje cells of rat cerebellum using the patch-clamp technique and a system of fast application.

View Article and Find Full Text PDF

Background/objectives: Antipsychotic medicines are used to treat several psychological disorders and some symptoms caused by dementia and schizophrenia. Haloperidol (Hal) is a typical antipsychotic usually used to treat psychosis; however, its use causes motor or extrapyramidal symptoms (EPS) such as catalepsy. Hal blocks the function of presynaptic D2 receptors on cholinergic interneurons, leading to the release of acetylcholine (ACh), which is hydrolyzed by the enzyme acetylcholinesterase (AChE).

View Article and Find Full Text PDF

In Silico Analysis of Triamterene as a Potential Dual Inhibitor of VEGFR-2 and c-Met Receptors.

J Xenobiot

December 2024

Cancer Biology and Therapy Laboratory, School of Applied and Health Sciences, London South Bank University, London SE1 0AA, UK.

The vascular endothelial growth factor receptor 2 (VEGFR2) and the hepatocyte growth factor receptor (C-Met) are critical receptors for signaling pathways controlling crucial cellular processes such as cell growth, angiogenesis and tissue regeneration. However, dysregulation of these proteins has been reported in different diseases, particularly cancer, where these proteins promote tumour growth, invasiveness, metastasis and resistance to conventional therapies. The identification of dual inhibitors targeting both VEGFR-2 and c-Met has emerged as a strategic therapeutic approach to overcome the limitations and resistance mechanisms associated with single-target therapies in clinical settings.

View Article and Find Full Text PDF

Two new cembrane-derived tricyclic diterpenes belonging to the sarcophytin family, namely 4-hydroxy-chatancin () and sarcotoroid (), together with two known related ones ( and ), were isolated from the soft coral collected off Ximao Island in the South China Sea. The structures of the new compounds were elucidated by extensive spectroscopic analysis, a quantum mechanical nuclear magnetic resonance (QM-NMR) method, a time-dependent density functional theory electronic circular dichroism (TDDFT-ECD) calculation, X-ray diffraction analysis, and comparison with the reported data in the literature. A plausible biosynthetic pathway of compounds - was proposed, involving undergoing a transannular Diels-Alder cycloaddition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!