Apathy is associated with large-scale white matter network disruption in small vessel disease.

Neurology

From the Department of Clinical Neurosciences (J.T., M.J.H., R.L.B., D.J.T., H.S.M.), University of Cambridge, UK; Department of Neurology (A.M.T., F.-E.d.L.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands; Neuroscience Research Centre (T.R.B.), Molecular and Clinical Sciences Research Institute, St. George's University of London; and Nuffield Department of Clinical Neurosciences (M.H.), University of Oxford, UK.

Published: March 2019

Objective: To investigate whether white matter network disruption underlies the pathogenesis of apathy, but not depression, in cerebral small vessel disease (SVD).

Methods: Three hundred thirty-one patients with SVD from the Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Cohort (RUN DMC) study completed measures of apathy and depression and underwent structural MRI. Streamlines reflecting underlying white matter fibers were reconstructed with diffusion tensor tractography. First, path analysis was used to determine whether network measures mediated associations between apathy and radiologic markers of SVD. Next, we examined differences in whole-brain network measures between participants with only apathy, only depression, and comorbid apathy and depression and a control group free of neuropsychiatric symptoms. Finally, we examined regional network differences associated with apathy.

Results: Path analysis demonstrated that network disruption mediated the relationship between apathy and SVD markers. Patients with apathy, compared to all other groups, were impaired on whole-brain measures of network density and efficiency. Regional network analyses in both the apathy subgroup and the entire sample revealed that apathy was associated with impaired connectivity in premotor and cingulate regions.

Conclusions: Our results suggest that apathy, but not depression, is associated with white matter tract disconnection in SVD. The subnetworks delineated suggest that apathy may be driven by damage to white matter networks underlying action initiation and effort-based decision making.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511108PMC
http://dx.doi.org/10.1212/WNL.0000000000007095DOI Listing

Publication Analysis

Top Keywords

white matter
20
apathy depression
20
apathy
12
network disruption
12
apathy associated
8
network
8
matter network
8
small vessel
8
vessel disease
8
diffusion tensor
8

Similar Publications

Pregnancy is a period of profound biological transformation. However, we know remarkably little about pregnancy-related brain changes. To address this gap, we chart longitudinal changes in brain structure during pregnancy and explore potential mechanisms driving these changes.

View Article and Find Full Text PDF

Sodium MRI can measure sodium concentrations in people with multiple sclerosis, but the extent to which these alterations reflect metabolic dysfunction in the absence of tissue damage or neuroaxonal loss remains uncertain. Increases in total sodium concentration and extracellular sodium concentration are believed to be indicative of tissue disruption and extracellular space expansion. Conversely, increase in intracellular sodium concentration may represent early and transient responses to neuronal insult, preceding overt tissue damage.

View Article and Find Full Text PDF

Increasing evidence suggests the involvement of metabolic alterations in neurological disorders, including Alzheimer's disease (AD), and highlights the significance of the peripheral metabolome, influenced by genetic factors and modifiable environmental exposures, for brain health. In this study, we examined 1,387 metabolites in plasma samples from 1,082 dementia-free middle-aged participants of the population-based Rotterdam Study. We assessed the relation of metabolites with general cognition (G-factor) and magnetic resonance imaging (MRI) markers using linear regression and estimated the variance of these metabolites explained by genes, gut microbiome, lifestyle factors, common clinical comorbidities, and medication using gradient boosting decision tree analysis.

View Article and Find Full Text PDF

Background: Perivascular Spaces (PVS) are a marker of cerebral small vessel disease (CSVD) that are visible on brain imaging. Larger PVS has been associated with poor quality of life and cognitive impairment post-stroke. However, the association between PVS and post-stroke sensorimotor outcomes has not been investigated.

View Article and Find Full Text PDF

Deep Learning Analysis of White Matter Hyperintensity and its Association with Comprehensive Vascular Factors in Two Large General Populations.

J Imaging Inform Med

January 2025

Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43-Gil, Seoul, 05505, Republic of Korea.

Although the relationships between basic clinical parameters and white matter hyperintensity (WMH) have been studied, the associations between vascular factors and WMH volume in general populations remain unclear. We investigated the associations between clinical parameters including comprehensive vascular factors and WMH in two large general populations. This retrospective, cross-sectional study involved two populations: individuals who underwent general health examinations at the Asan Medical Center (AMC) and participants from a regional cohort, the Korean Genome and Epidemiology Study (KoGES).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!