Puberty is a critical period of development marked by sexual, immune, and neural maturation. Exposure to stress during this period can lead to enduring changes in brain functioning and in behavior; however, the underlying mechanisms and the programming effects of stress during puberty remain unknown. Therefore, the objective of this study was to investigate the programming effects of pubertal immune challenge in response to a homotypic stressor later in life in CD-1 mice. Age and sex differences in the peripheral and central cytokine levels, along with sickness behavior and telemetry data, were analyzed following the secondary treatment. The results showed that pretreatment with LPS attenuated the immune response to a second homotypic challenge. Males pretreated with LPS during puberty and in early adulthood displayed an attenuated hypothermic response following the second LPS treatment compared with saline-pretreated controls, which is consistent with the attenuated peripheral IL-6 and IFN-γ concentrations. Females pretreated with LPS during puberty displayed lower IL-1β, TNF-α, and IL-6 mRNA expression in the prefrontal cortex following the secondary immune challenge compared with saline controls. The results of this study show that exposure to LPS during puberty programs the peripheral and central immune responses, resulting in an attenuated immune response following a subsequent homotypic stressor. Thus, exposure to an immune challenge during puberty affects immune function later in life, which could permanently affect brain function and have implications on mental health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.1801351 | DOI Listing |
Expert Rev Pharmacoecon Outcomes Res
January 2025
IQVIA, Durham, NC.
Introduction: The 2022 Inflation Reduction Act (IRA) is expected to result in lower drug prices for Medicare beneficiaries in the United States (US). The Centers for Medicare & Medicaid Services (CMS) released the most recent draft guidance for the Medicare Drug Price Negotiation (DPN) program in May 2024.
Areas Covered: In August 2023, the list of 10 drugs selected for the DPN were published and the first round of negotiations are now complete.
J Biochem Mol Toxicol
January 2025
Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China.
Bisphenol A (BPA), an environmental endocrine disrupting chemical, is one of the most widely used chemicals in the world and is widely distributed in the external environment, specifically in food, water, dust, and soil. BPA exposure is associated with abnormal cognitive behaviors. However, the underlying mechanism remains unclear.
View Article and Find Full Text PDFJ Gastroenterol
January 2025
Department of Infectious Diseases, the First Affiliated Hospital of Xi'an Jiaotong University, West Yanta Road 277, Xi'an, 710061, China.
Background: We aim to comprehensively analyze and validate the prognostic efficacy of tetraspanin 4 (TSPAN4) and several other migrasome-related markers in hepatocellular carcinoma (HCC).
Methods: The expression, diagnostic, and prognostic efficacy of five migrasome-related genes in HCC were analyzed using several databases. Five pairs of adjacent non-tumor tissues and HCC tissues were used to validate the expression.
J Natl Cancer Inst
January 2025
Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA.
Childhood cancers are a heterogeneous group of rare diseases, accounting for less than 2% of all cancers diagnosed worldwide. Most countries, therefore, do not have enough cases to provide robust information on epidemiology, treatment, and late effects, especially for rarer types of cancer. Thus, only through a concerted effort to share data internationally will we be able to answer research questions that could not otherwise be answered.
View Article and Find Full Text PDFPak J Pharm Sci
January 2025
Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Airlangga, University, Surabaya, Indonesia.
This study attempts to prove that the antioxidant effect of fucoxanthin nanoparticles can prevent streptozotocin-induced rat liver damage. Fucoxanthin nanoparticles are synthesized using the high-energy ball milling method. Dynamic Light Scattering (DLS) was then used to describe the sizes of the fucoxanthin nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!