Upon activation, naive CD4 T cells differentiate into distinct T cell subsets via processes reliant on epigenetically regulated, lineage-specific developmental programs. Here, we examined the function of the histone methyltransferase SETDB1 in T helper (Th) cell differentiation. Setdb1 naive CD4 T cells exhibited exacerbated Th1 priming, and when exposed to a Th1-instructive signal, Setdb1 Th2 cells crossed lineage boundaries and acquired a Th1 phenotype. SETDB1 did not directly control Th1 gene promoter activity but relied instead on deposition of the repressive H3K9me3 mark at a restricted and cell-type-specific set of endogenous retroviruses (ERVs) located in the vicinity of genes involved in immune processes. Refined bioinformatic analyses suggest that these retrotransposons regulate Th1 gene cis-regulatory elements or act as Th1 gene enhancers. Thus, H3K9me3 deposition by SETDB1 ensures Th cell lineage integrity by repressing a repertoire of ERVs that have been exapted into cis-regulatory modules to shape and control the Th1 gene network.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.immuni.2019.01.003DOI Listing

Publication Analysis

Top Keywords

th1 gene
16
histone methyltransferase
8
methyltransferase setdb1
8
cell lineage
8
lineage integrity
8
integrity repressing
8
endogenous retroviruses
8
naive cd4
8
cd4 t cells
8
control th1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!