Equilibrium Modeling of the Mechanics and Structure of the Cancer Glycocalyx.

Biophys J

Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York. Electronic address:

Published: February 2019

The glycocalyx is a thick coat of proteins and carbohydrates on the outer surface of all eukaryotic cells. Overproduction of large, flexible or rod-like biopolymers, including hyaluronic acid and mucins, in the glycocalyx strongly correlates with the aggression of many cancer types. However, theoretical frameworks to predict the effects of these changes on cancer cell adhesion and other biophysical processes remain limited. Here, we propose a detailed modeling framework for the glycocalyx incorporating important physical effects of biopolymer flexibility, excluded volume, counterion mobility, and coupled membrane deformations. Because mucin and hyaluronic biopolymers are proposed to extend and rigidify depending on the extent of their decoration with side chains, we propose and consider two limiting cases for the structural elements of the glycocalyx: stiff beams and flexible chains. Simulations predict the mechanical response of the glycocalyx to compressive loads, which are imposed on cells residing in the highly confined spaces of the solid tumor or invaded tissues. Notably, the shape of the mechanical response transitions from hyperbolic to sigmoidal for more rod-like glycocalyx elements. These mechanical responses, along with the corresponding equilibrium protein organizations and membrane topographies, are summarized to aid in hypothesis generation and the evaluation of future experimental measurements. Overall, the modeling framework developed provides a theoretical basis for understanding the physical biology of the glycocalyx in human health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382957PMC
http://dx.doi.org/10.1016/j.bpj.2018.12.023DOI Listing

Publication Analysis

Top Keywords

glycocalyx
8
modeling framework
8
mechanical response
8
equilibrium modeling
4
modeling mechanics
4
mechanics structure
4
structure cancer
4
cancer glycocalyx
4
glycocalyx glycocalyx
4
glycocalyx thick
4

Similar Publications

: Retinal vein occlusion (RVO) is a relatively uncommon condition with a complex pathophysiology. However, its association with traditional cardiovascular risk factors is well established. In this study, we compared arterial stiffness and endothelial function between patients with RVO and healthy controls.

View Article and Find Full Text PDF

Damage to glycocalyx and tight junction are key determinants of endothelial permeability, which is the main pathological feature of acute respiratory distress syndrome (ARDS). However, the effect of glycocalyx heparan sulfate (HS) on tight junction proteins occludin and ZO-1 has not been revealed. In this study, the mice exposed to LPS results showed that FITC-albumin infiltration, HS shedding, and tight junction protein impairment were most severe at 6 h of LPS treatment compared with those in other treatment times.

View Article and Find Full Text PDF

In the mammalian cardiovascular system, endothelial glycocalyx is a gel-like layer that covers the luminal surface of endothelial cells (ECs) and plays crucial roles in vascular homeostasis, permeability and leukocyte adhesion. Degradation of this structure occurs early in sepsis and becomes accordingly dysfunctional. In severe cases, it is not self-regulated by the organism.

View Article and Find Full Text PDF

In glomerulopathies, endothelial dysfunction and the presence of histological vascular lesions such as thrombotic microangiopathy, arteriolar hyalinosis, and arteriosclerosis are related to a severe clinical course and worse renal prognosis. The endothelial cell, which naturally has anti-inflammatory and anti-thrombotic regulatory mechanisms, is particularly susceptible to damage caused by various etiologies and can become dysfunctional due to direct/indirect injury or a deficiency of protective factors. In addition, endothelial regulation and protection involve participation of the complement system, factors related to angiogenesis, the renin-angiotensin system (RAS), endothelin, the glycocalyx, the coagulation cascade, interaction between these pathways, interactions between glomerular structures (the endothelium, mesangium, podocyte, and basement membrane) and interstitial structures (tubules, arterioles and small vessels).

View Article and Find Full Text PDF

Previous abdominal surgery (PAS) increases risk of small bowel obstruction (SBO) due to adhesions, and appendectomy (appy) is an independent risk factor for abdominal adhesion-related complications. Peritoneal inflammation, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!