In vitro and in vivo studies were performed to assess whether Eimeria tenella (E. tenella) oocysts, exposed to low energy electron irradiation (LEEI), might be considered potential vaccine candidates against cecal coccidiosis. Sporulated oocysts were exposed to LEEI of 0.1 kGy to 10.0 kGy. Reproduction inhibition assays (RIA) were performed in MDBK cells to assess infectivity of sporozoites excysted from irradiated and non-irradiated oocysts. LEEI of 0.1 kGy or 0.5 kGy resulted in 73.2% and 86.5% inhibition of in vitro reproduction (%I), respectively. Groups of 12 one day old (D1) chicken were orally inoculated with Paracox®-8 (G1), 2.0 × 10 non-irradiated oocysts (G2) or 1.0 × 10 irradiated oocysts exposed to LEEI of 0.1 kGy (G3, G4) or 0.5 kGy (G5). Chicken of groups G1, G2, G4 and G5 were challenged 3 weeks later (D21) by a single inoculation of 7.5 × 10 non-attenuated oocysts of the same strain while G3 remained unchallenged. All chickens were subject to necropsy 7 days after challenge (D28) to estimate lesion scores (LS) and oocyst index (OI). A positive control (PC, non-vaccinated, challenged) and a negative control (NC, non-vaccinated, non-challenged) were kept in parallel. Chicken of group G5 had similar weight gain as the Paracox®-8 group (G1) after challenge and higher weight gains as compared to the other vaccinated groups. Feed conversion ratio (FCR) did not differ between chickens inoculated with oocysts irradiated with 0.5 kGy (G5) and negative control (NC) before challenge (1.25-1.52). After challenge FCR was 1.99 (G5) to 2.23 (G4) in the vaccinated chicken compared to 1.76 in group NC. LS and OI were significantly lower in all vaccinated groups as compared to group PC. Progeny oocysts collected from the feces of chickens following vaccination with irradiated oocysts exhibited lower in vitro infectivity/reproduction in MDBK cells with %I of 89.7% and 82.4% for progeny of oocysts irradiated with 0.5 kGy and 0.1 kGy, respectively, suggesting hereditary attenuation by LEEI treatment. Seroconversion was demonstrated by ELISA before challenge (D21) in all vaccinated groups, however, chicken inoculated with irradiated oocysts displayed higher antibody levels than those inoculated with precocious oocysts (G1). In Western blot analysis chicken vaccinated with virulent (G2) or 0.1 kGy-irradiated E. tenella oocysts (G3, G4) showed more protein bands compared to G5 (0.5 kGy). We conclude that LEEI could be a promising technology for production of attenuated oocyst vaccines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetpar.2019.01.001 | DOI Listing |
Biochem Biophys Res Commun
January 2025
Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran. Electronic address:
Recently, there has been significant interest in developing combination adjuvants to achieve efficient vaccines. However, it remains uncertain which combinations of adjuvants could best enhance the immune response to the recombinant antigen. In the current study, to improve the immunogenicity of Plasmodium falciparum cell traversal protein for ookinetes and sporozoites (PfCelTOS), we tested three different adjuvants: MPL, Poly I:C, and QS-21 alone or in a triple mixture (MPL/Poly I:C/QS-21; MPQ) and a dual mixture (Poly I:C/QS-21; PQ).
View Article and Find Full Text PDFInt J Vet Sci Med
January 2025
Galicia (Grupo INVESAGA). Departamento de Patología Animal. Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain, Investigación en Sanidad Animal.
Although , and some species are frequently involved in neonatal calf diarrhoea (NCD), detailed studies on their interactions are scarce. Therefore, a cross-sectional study including faecal samples from 404 diarrhoeic calves aged 0-30 days was performed. oocysts and cysts were detected by immunofluorescence antibody test and positive samples were molecularly characterized.
View Article and Find Full Text PDFFEMS Microbes
December 2024
FG16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, 13353 Berlin, Germany.
The apicomplexan parasite has a complex life cycle. Access to sexual stages and sporozoite-containing oocysts, essential for studying the parasite's environmental transmission, is limited and requires animal experiments with cats. Thus, alternatives and resource-efficient methods are needed.
View Article and Find Full Text PDFNat Commun
January 2025
Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
Plasmodium, the causative agents of malaria, are obtained by mosquitoes from an infected human. Following Plasmodium acquisition by Anopheles gambiae, mosquito gamma-interferon-inducible lysosomal thiol reductase (mosGILT) plays a critical role in its subsequent sporogony in the mosquito. A critical location for this development is the midgut, a tissue we show expresses mosGILT.
View Article and Find Full Text PDFInt J Parasitol
January 2025
Institute of Parasitology, Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1 A-1210 Vienna, Austria.
Cystoisospora suis, a porcine enteral parasite of the order Coccidia, is characterized by a complex life cycle, with asexual and sexual development in the epithelium of the host gut and an environmental phase as an oocyst. All developmental stages vary greatly in their morphology and function, and therefore excrete different bioactive molecules for intercellular communication. Due to their complex development, we hypothesized that the extracellular vesicles (EVs) cargo is highly dependent on the life cycle stages from which they are released.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!