Contagious caprine pleuropneumonia (CCPP), caused by Mycoplasma capricolum subsp. capripneumoniae is a severe disease widespread in Africa and Asia. Limited knowledge is available on the pathogenesis of this organism, mainly due to the lack of a robust in vivo challenge model and the means to do site-directed mutagenesis. This work describes the establishment of a novel caprine challenge model for CCPP that resulted in 100% morbidity using a combination of repeated intranasal spray infection followed by a single transtracheal infection employing the recent Kenyan outbreak strain ILRI181. Diseased animals displayed CCPP-related pathology and the bacteria could subsequently be isolated from pleural exudates and lung tissues in concentrations of up to 10 bacteria per mL as well as in the trachea using immunohistochemistry. Reannotation of the genome sequence of ILRI181 and F38 revealed the existence of genes encoding the complete glycerol uptake and metabolic pathways involved in hydrogen peroxide (HO) production in the phylogenetically related pathogen M. mycoides subsp. mycoides. Furthermore, the expression of L-α-glycerophosphate oxidase (GlpO) in vivo was confirmed. In addition, the function of the glycerol metabolism was verified by measurement of production of HO in medium containing physiological serum concentrations of glycerol. Peroxide production could be inhibited with serum from convalescent animals. These results will pave the way for a better understanding of host-pathogen interactions during CCPP and subsequent vaccine development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6368817 | PMC |
http://dx.doi.org/10.1186/s13567-019-0628-0 | DOI Listing |
Environ Monit Assess
January 2025
Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, 127031, India.
Adsorption seemed like an excellent physicochemical process employed for wastewater treatment. In the last few decades, significant improvements have been made in efficiency and economy to remove contaminants from wastewater using several adsorbents. However, less attention was paid to the regeneration of used adsorbents.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Space Growers, Santiago of Chile, Chile.
This study investigates the physiological and morphological responses of wheat (Triticum aestivum) and pea (Pisum sativum) grown in a mixture of lunar soil (LS) simulant and organic soil (OS). The experiment compared the growth of both pea and wheat in 100% organic soil (OS) and a 3:2 mixture of OS and LS (OS: LS). Wheat exhibited increased branching and root growth in OS: LS, while pea plants showed enhanced aerial elongation and altered branch morphology.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China.
Sepsis is an underappreciated yet severe threat to human life, marked by organ dysfunction and high mortality resulting from disordered inflammatory responses to blood infection. Unfortunately, no specific drugs are available for effective sepsis treatment. As a pivotal biomarker for sepsis, lactate levels are closely related to vascular permeability and sepsis-associated mortality.
View Article and Find Full Text PDFScientifica (Cairo)
January 2025
Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh.
In chronic kidney disease (CKD), hyperuricemia is a common phenomenon, presumably due to reduced renal clearance of uric acid. This study investigated the effect of xanthine oxidase (XO) inhibitors allopurinol and febuxostat to prevent oxidative stress in the kidney of two-kidney, one-clip (2K1C) rats. In this investigation, 2K1C rats were used as an experimental animal model for kidney dysfunction.
View Article and Find Full Text PDFWater used in post-harvest handling and processing operations is an important risk factor for microbiological cross-contamination of fruits, vegetables and herbs (FVH). Industrial data indicated that the frozen FVH sector is characterised by operational cycles between 8 and 120 h, variable product volumes and no control of the temperature of process water. Intervention strategies were limited to the use of water disinfection treatments such as peroxyacetic acid and hydrogen peroxide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!