Ordering in clusters of uniaxial anisotropic particles during homogeneous nucleation and growth.

J Chem Phys

Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.

Published: February 2019

The nucleation process of anisotropic particles often differs from that of their spherically symmetric counterparts. Despite a large body of work on the structure of droplets of anisotropic particles, their formation process remains poorly understood. In this study, homogeneous nucleation of uniaxial anisotropic particles was studied. Through structural analysis of cluster development and the formation free energy during the nucleation stage, it was revealed that the nucleation of uniaxial particles begins from highly ordered states. There is, however, a marked decrease in orientational order within the cluster before critical nucleus size is attained. Further investigation on variations in the molecular interactions demonstrates how droplet elongation and the direction of the nematic ordering director relative to the axis of elongation can both be controlled according to the nature of the molecular anisotropy.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5064410DOI Listing

Publication Analysis

Top Keywords

anisotropic particles
16
uniaxial anisotropic
8
homogeneous nucleation
8
nucleation uniaxial
8
particles
5
nucleation
5
ordering clusters
4
clusters uniaxial
4
anisotropic
4
particles homogeneous
4

Similar Publications

Cavity as radio telescope for galactic dark photon.

Sci Bull (Beijing)

January 2025

School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China; Center for High Energy Physics, Peking University, Beijing 100871, China; Key Laboratory of Particle Acceleration Physics and Technology, Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Dark photons, as a minimal extension of the Standard Model through an additional Abelian gauge group, may propagate relativistically across the galaxy, originating from dark matter decay or annihilation, thereby contributing to a galactic dark photon background. The generation of dark photons typically favors certain polarization modes, which are dependent on the interactions between dark matter and dark photons. We introduce a framework in which a resonant cavity is utilized to detect and differentiate these polarizations, leveraging the daily variation in expected signals due to the anisotropic distribution of dark photons and the rotation of the Earth.

View Article and Find Full Text PDF

Triangular-shaped Cu-Zn-In-Se-based nanocrystals with narrow near infrared photoluminescence.

Nanoscale

January 2025

Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany.

Tunable optical properties exhibited by semiconductor nanocrystals (NCs) in the near infrared (NIR) spectral region are of particular interest in various applications, such as telecommunications, bioimaging, photodetection, photovoltaics, . While lead and mercury chalcogenide NCs do exhibit exemplary optical properties in the NIR, Cu-In-Se (CISe)-based NCs are a suitable environment-friendly alternative to these toxic materials. Several reports of NIR-emitting (quasi)spherical CISe NCs have been published, but their more complex-shaped counterparts remain rather less explored.

View Article and Find Full Text PDF

Tendon-mimicking anisotropic alginate-based double-network composite hydrogels with enhanced mechanical properties and high impact absorption.

Carbohydr Polym

March 2025

School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea. Electronic address:

Tendons are anisotropic tissues with exceptional mechanical properties, which result from their unique anisotropic structure and mechanical behavior under stress. While research has focused on replicating anisotropic structures and mechanical properties of tendons, fewer studies have examined their specific mechanical behaviors. Here, we present a simple method for creating calcium-crosslinked alginate-based double-network hydrogels that mimics tendons by exhibiting anisotropic structure, high mechanical strength and toughness, and a distinctive "toe region" when stretched.

View Article and Find Full Text PDF

Proposed Optical Manipulation of Nanoparticles to Access and Select Emission Lines.

Nano Lett

January 2025

Department of Materials Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.

Optical manipulation of nanomaterials using light resonant with material excitations holds promise for enhancing optical forces and sorting particles by unique quantum properties. Conventional resonant optical sorting mainly relies on absorption and scattering forces, making it difficult to sort nanomaterials by specific emission lines. Furthermore, emission typically induces negligible force unless the material is highly anisotropic, limiting selective manipulation via emission characteristics.

View Article and Find Full Text PDF

Inspired by counterintuitive water "swelling" ability of the hydrophobic moss of the genus Sphagnum (Peat moss), we prepared a hydrophobic pseudo-hydrogel (HPH), composed of a pure hydrophobic silicone elastomer with a tailored porous structure. In contrast to conventional hydrogels, HPH achieves absorption-induced volume expansion through surface tension induced elastocapillarity, presenting an unexpected absorption-induced volume expansion capability in hydrophobic matrices. We adopt a theoretical framework elucidating the interplay of surface tension induced elastocapillarity, providing insights into the absorption-induced volume expansion behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!