In the present work, we provide evidence for visible light irradiation of the Au/TiO₂ nanoparticles' surface plasmon resonance band (SPR) leading to electron injection from the Au nanoparticles to the conduction band of TiO₂. The Au/TiO₂ SPR band is shown to greatly enhance the light absorption of TiO₂ in the visible region. Evidence is presented for the light absorption by the Au/TiO₂ plasmon bands leading to the dissolution of Au nanoparticles. This dissolution occurs concomitantly with the injection of the hot electrons generated by the Au plasmon into the conduction band of TiO₂. The electron injection from the Au nanoparticles into TiO₂ was followed by femtosecond spectroscopy. The formation of Au ions was further confirmed by the spectral shift of the transient absorption spectra of Au/TiO₂. The spectral changes of the SPR band of Au/TiO₂ nanoparticles induced by visible light were detected by spectrophotometer, and the morphological transformation of Au/TiO₂ was revealed by electron microscopy techniques as well. Subsequently, the fate of the Au ions was sorted out during the growth and biofilm formation for some selected Gram-negative bacteria. This study compares the bactericidal mechanism of Au ions and Ag ions, which were found to be substantially different depending on the selected cell used as a probe.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410102 | PMC |
http://dx.doi.org/10.3390/nano9020217 | DOI Listing |
Chemistry
January 2025
Beijing University of Posts and Telecommunications, School of Science, Beijing, CHINA.
Cofacial electron donor-acceptor dyads exhibiting through-space charge-transfer (TSCT) characteristics are widely employed in the development of optoelectronic functional materials. The flexible molecular frameworks between the electron donor and acceptor components allow dynamic modulation of electronic coupling, influenced by excited-state structural relaxation or intermolecular interactions, thereby affecting the charge-transfer (CT) dynamics and the emission properties of TSCT states. In this work, we examine the TSCT dynamic processes of two electron donor-acceptor dyads, CzPhNI and CzPhPI formed by ortho-substitution of phenyl linkage with V-shaped flexible TSCT structures using carbazole as donor and naphthalimide or phthalimide as acceptor.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata-700106, India.
Herein, we investigated the carrier-phonon relaxation process in a two-dimensional (2D) BAPbBr perovskite and its heterostructure with MoS. Energy transfer was observed in the van der Waals heterostructure of 2D perovskite and monolayer MoS, leading to enhancement in the photoluminescence intensity of MoS. Femtosecond pump-probe spectroscopy was used to study the carrier and lattice dynamics of pristine 2D materials and their heterostructure.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Abteilung für Molekulare Physikalische Chemie, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstraße 12, 53115 Bonn, Germany.
The binding of carbon dioxide to a transition metal is a complex phenomenon that involves a major redistribution of electron density between the metal center and the triatomic ligand. The chemical reduction of the ligand reveals itself unambiguously by an angular distortion of the CO-molecule as a result of the occupation of an anti-bonding π-orbital and a shift of its antisymmetric stretching vibration, ν, to lower wavenumbers. Here, we generate a carbon dioxide complex of the heavier group-10 metal, platinum, by ultrafast electronic excitation and cleavage of CO from the photolabile oxalate precursor, oxaliplatin, and monitored the ensuing primary dynamics with ultrafast mid-infrared spectroscopy.
View Article and Find Full Text PDFRSC Adv
January 2025
School of Electrical Engineering and Intelligentization, Dongguan University of Technology Dongguan 523808 China
This work employs the femtosecond laser-ablation spark-induced breakdown spectroscopy (fs-LA-SIBS) technique for the quantitative analysis of magnesium alloy samples. It integrates four machine learning models: Random Forest (RF), Support Vector Machine (SVM), Partial Least Squares (PLS), and -Nearest Neighbors (KNN) to evaluate their classification performance in identifying magnesium alloys. In regression tasks, the models aim to predict the content of four elements: manganese (Mn), aluminum (Al), zinc (Zn), and nickel (Ni) in the samples.
View Article and Find Full Text PDFSmall
January 2025
Department of Physics, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
In this study, we investigate how modulating organic spacers in perovskites influences their X-ray detection performance and reveal the mechanism of low-dose detection with high sensitivity using femtosecond-transient absorption spectroscopy (fs-TAS). Particularly, we employ N,N,N',N'-tetramethyl-1,4-phenylenediammonium (TMPDA) and N,N-dimethylphenylene-p-diammonium (DPDA) as organic spacers to synthesize 2D perovskite single crystals (SCs). We find that DPDA-based SCs exhibit reduced interplanar spacing between inorganic layers, leading to increased lattice packing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!