We introduce an efficient cell tracking imaging protocol using positron emission tomography (PET). Since macrophages are known to home and accumulate in tumor tissues and atherosclerotic plaque, we design a PET imaging protocol for macrophage cell tracking using aza-dibenzocyclooctyne-tethered PEGylated mesoporous silica nanoparticles (DBCO-MSNs) with the short half-life F-18-labeled azide-radiotracer via an in vivo strain-promoted alkyne azide cycloaddition (SPAAC) covalent labeling reaction inside macrophage cells in vivo. This PET imaging protocol for in vivo cell tracking successfully visualizes the migration of macrophage cells into the tumor site by the bioorthogonal SPAAC reaction of DBCO-MSNs with [F]fluoropentaethylene glycolic azide ([F]2) to form F-labeled aza-dibenzocycloocta-triazolic MSNs (F-DBCOT-MSNs) inside RAW 264.7 cells. The tissue radioactivity distribution results were consistent with PET imaging findings. In addition, PET images of atherosclerosis in ApoE mice fed a western diet for 30 weeks were obtained using the devised macrophage cell-tracking protocol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2019.01.043 | DOI Listing |
Lab Chip
January 2025
Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
Revealing how individual cells alter their secretions over time is crucial for understanding their responses to environmental changes. Key questions include: When do cells modify their functions and states? What transitions occur? Insights into the kinetic secretion trajectories of various cell types are essential for unraveling complex biological systems. This review highlights seven microfluidic technologies for time-resolved single-cell secretion analysis: 1.
View Article and Find Full Text PDFJ Transl Med
January 2025
The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
Background: Bone marrow mesenchymal stem cells (BMSCs) are a crucial component of the tumor microenvironment (TME), with hypoxic conditions promoting their migration to tumors. Exosomes play a vital role in cell-to-cell communication within the TME. Hypoxic TME have a great impact on the release, uptake and biofunctions of exosomes.
View Article and Find Full Text PDFBMC Microbiol
January 2025
School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
Mycobacterium tuberculosis (M. tuberculosis) and Mycobacterium abscessus (M. abscessus) are important pathogens that can cause lung diseases.
View Article and Find Full Text PDFBMJ Open
January 2025
Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Introduction: Cardiovascular diseases (CVDs) present differently in women and men, influenced by host-microbiome interactions. The roles of sex hormones in CVD outcomes and gut microbiome in modifying these effects are poorly understood. The XCVD study examines gut microbiome mediation of sex hormone effects on CVD risk markers by observing transgender participants undergoing gender-affirming hormone therapy (GAHT), with findings expected to extrapolate to cisgender populations.
View Article and Find Full Text PDFeNeuro
January 2025
Penn Statistics in Imaging and Visualization Center (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA.
To develop reparative therapies for neurological disorders like multiple sclerosis (MS), we need to better understand the physiology of loss and replacement of oligodendrocytes, the cells that make myelin and are the target of damage in MS. In vivo two-photon fluorescence microscopy allows direct visualization of oligodendrocytes in the intact brain of transgenic mouse models, promising a deeper understanding of the longitudinal dynamics of replacing oligodendrocytes after damage. However, the task of tracking the fate of individual oligodendrocytes requires extensive effort for manual annotation and is especially challenging in three-dimensional images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!