Establishment of electrochemical zones for remediation of dissolved chlorinated solvents in natural settings was studied. An undivided 1D-experimental column set-up was designed for the assessment of the influence of site-extracted contaminated groundwater flowing through a sandy aquifer material, on the execution of laboratory testing. A three-electrode system composed of palladium coated pure iron cathodes and a cast iron anode was operated at 12 mA under varying flow rates. The natural settings added complexity through a diverse groundwater chemistry and resistance in the sand. In addition, significant precipitation of iron released through anode corrosion was observed. Nevertheless, the complex system was successfully modelled with a simple geochemical model using PHREEQC. A ranking of the significances of system parameters on the laboratory execution of electrochemical remediation in natural settings was proposed: Geological properties > anode corrosion > site-extracted contaminated groundwater > the carbonate system > sulphate > hydrology > less significant unidentified parameters. This study provides insight in actual challenges that need to be overcome for in situ electrochemical remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2018.12.064 | DOI Listing |
Environ Res
December 2024
Environment Research Institute, Shandong University, Qingdao 266237, P. R. China; School of Mining and Petroleum Engineering, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada. Electronic address:
Electrochemical advanced oxidation processes (EAOPs) are energy-efficient methods for generating activated radicals like HO and SO, which enable the degradation of difficult-to-mineralize chlorinated organic compounds. This study explored the catalytic activity and reaction mechanism of EAOPs under a dual strategy involving non-metal doped CN (X@CN (X = O, F, Si)) and a heterostructured build(X@CN/TiCT) using first principles calculation. The non-metal doping and the heterojunction construction can make HO and PMS spontaneously adsorb (E< 0), with negative Gibbs free energy for their oxidation to HO and SO, significantly enhancing catalytic activity.
View Article and Find Full Text PDFWater Res
December 2024
Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China; Institute of Sun Yat-Sen University in Shenzhen, PR China. Electronic address:
Electrochemical oxidation process (EOP) is promising for micropollutant degradation in water treatment, where chloride ions (Cl) are inevitable in aqueous systems, leading to the EOP/Cl system. The oxidation of Cl at anodes generates reactive chlorine species (RCS), including heterogeneous chlorine species (Cl), homogeneous free available chlorine (FAC), chlorine dioxide (ClO), and chlorine radicals (CRs). This study developed a method to differentiate various RCS responsible for the removal of carbamazepine in EOP/Cl using the RuO/IrO-Ti anode.
View Article and Find Full Text PDFChem Rec
December 2024
Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh.
Nitrate (NO ) contamination from industrial, agricultural, and anthropogenic activities poses significant risks to human health and ecosystems. While traditional NO remediation methods are effective, they often generate secondary pollutants and incur high costs. Electrochemical NO reduction (ECNR) offers a sustainable alternative, converting NO into environmentally benign nitrogen (N) or valuable ammonia (NH).
View Article and Find Full Text PDFAcc Chem Res
December 2024
Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States.
ConspectusThe surface of a catalyst is crucial for understanding the mechanisms of catalytic reactions at the molecular level and developing new catalysts with higher activity, selectivity, and durability. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is a technique studying the surface of a sample in the gas phase, mainly identifying chemical identity, analyzing oxidation state, and measuring surface composition.In the last decade, numerous photoelectron spectroscopic methods for fundamental studies of key topics in catalysis using AP-XPS have been developed.
View Article and Find Full Text PDFMicrosyst Nanoeng
December 2024
School of Materials Science and Engineering, Changchun University of Science and Technology, 130022, Changchun, China.
This study introduces a multifunctional device based on CuO/g-CN monitoring and purification p-n heterojunctions (MPHs), seamlessly integrating surface-enhanced Raman scattering (SERS) detection with photocatalytic degradation capabilities. The SERS and photocatalytic performances of the CuO in various morphologies, g-CN nanosheets (NSs) and CuO/g-CN MPHs with different g-CN mass ratios were systematically evaluated, with a particular emphasis on the CuO/g-CN-0.2 MPH, where g-CN constituted 20% of the total mass.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!