Observation of an Odd-Integer Quantum Hall Effect from Topological Surface States in Cd_{3}As_{2}.

Phys Rev Lett

State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.

Published: January 2019

AI Article Synopsis

  • The quantum Hall effect (QHE) in 3D Dirac semimetals like Cd₃As₂ may stem from either quantum confinement in bulk subbands or Weyl orbits, but uncertainty remains about the impact of gapped bulk Weyl nodes.
  • Researchers observed quantized Hall plateaus in Cd₃As₂ nanoplate under a strong magnetic field, confirming a Berry's phase π from the topological surface states when the field is aligned with the [001] direction.
  • Interestingly, the study also found even filling factors with a different magnetic orientation ([112]), suggesting a break in C₄ rotational symmetry and a potential topological phase transition.

Article Abstract

The quantum Hall effect (QHE) in a 3D Dirac semimetal thin film is attributed to either the quantum confinement induced bulk subbands or the Weyl orbits that connect the opposite surfaces via bulk Weyl nodes. However, it is still unknown whether the QHE based on the Weyl orbit can survive as the bulk Weyl nodes are gapped. Moreover, there are closed Fermi loops rather than open Fermi arcs on the Dirac semimetal surface, which can also host the QHE. Here we report the QHE in the 3D Dirac semimetal Cd_{3}As_{2} nanoplate by tuning the gate voltage under a fixed 30 T magnetic field. The quantized Hall plateaus at odd filling factors are observed as a magnetic field along the [001] crystal direction, indicating a Berry's phase π from the topological surface states. Furthermore, even filling factors are observed when the magnetic field is along the [112] direction, indicating the C_{4} rotational symmetry breaking and a topological phase transition. The results shed light on the understanding of QHE in 3D Cd_{3}As_{2}.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.122.036602DOI Listing

Publication Analysis

Top Keywords

dirac semimetal
12
magnetic field
12
quantum hall
8
topological surface
8
surface states
8
qhe dirac
8
bulk weyl
8
weyl nodes
8
filling factors
8
factors observed
8

Similar Publications

Atomic Manipulation on 2D Sumanene for Precise Fermi Level Positioning in Ultrafast High-Capacity Alkali Metal Batteries.

Nano Lett

January 2025

State Key Laboratory of Structural Analysis for Industrial Equipment & School of Physics, Dalian University of Technology, Dalian 116024 People's Republic of China.

Article Synopsis
  • A sumanene monolayer with a unique Kagome-like lattice features two flat bands and two Dirac cones, which can be designed using carbon clusters.
  • First-principles simulations show that surface charge doping can effectively adjust the Fermi level between these bands, allowing for the transformation of the semiconducting monolayer into a semimetal using Li/Na/K atoms.
  • This doped sumanene exhibits high theoretical storage capacity, rapid charge capability, and exceptional structural stability, making it an attractive anode material for alkali-metal batteries.
View Article and Find Full Text PDF

Charge-carrier compensation in topological semimetals amplifies the Nernst signal and simultaneously degrades the Seebeck coefficient. In this study, we report the simultaneous achievement of both a large Nernst signal and an unsaturating magneto-Seebeck coefficient in a topological nodal-line semimetal TaAs single crystal. The unique dual-high transverse and longitudinal thermopowers are attributed to multipocket synergy effects: the combination of a strong phonon-drag effect and the two overlapping highly dispersive conduction and valence bands with electron-hole compensation and high mobility, promising a large Nernst effect; the third Dirac band causes a large magneto-Seebeck effect.

View Article and Find Full Text PDF

We report the detailed investigation of the magnetic, transport, and magnetocaloric effects of GdS- bSe by magnetic susceptibility χ(T ), isothermal magnetization M (H), resistivity ρ(T, H), and heat capacity Cp(T ) measurements, crystallizing in the ZrSiS-type tetragonal crystal system with space group P 4/nmm. Temperature-dependent magnetic susceptibility measurements revealed long-range antiferromagnetic ordering with two additional magnetic anomalies below N´eel temperature (TN ≈ 8.6 K), corroborated through magnetocaloric and specific heat studies.

View Article and Find Full Text PDF

Giant Photogalvanic Effect-Induced Terahertz Wave Emission in Wafer-Scale Type-II Dirac Semimetal PtTe.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.

Terahertz (THz) emission arising from the second-order nonlinear photocurrent effects in two-dimensional quantum materials has attracted significant attention due to its high efficiency and ease of polarization manipulation. However, in centrosymmetric quantum materials, the terahertz emission is typically suppressed, caused by the directional symmetry of the photocurrent generated under femtosecond laser excitation. In this work, we report that wafer-scale type-II Dirac semimetal PtTe with lattice centrosymmetry exhibits remarkably high THz emission efficiency (2 orders of magnitude greater than that of a ZnTe nonlinear crystal with equivalent thickness) and pronounced polarization sensitivity at room temperature.

View Article and Find Full Text PDF

Topological semimetals have recently garnered widespread interest in the quantum materials research community due to their symmetry-protected surface states with dissipationless transport which have potential applications in next-generation low-power electronic devices. One such material, [Formula: see text], exhibits Dirac nodal arcs and although the topological properties of single crystals have been investigated, there have been no reports in crystalline thin film geometry. We examined the growth of [Formula: see text] heterostructures on a range of single crystals by optimizing the electron beam evaporation of Pt and Sn and studied the effect of vacuum thermal annealing on phase and crystallinity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!