Importance: As currently used, microperimetry is a burdensome clinical testing modality for testing retinal sensitivity requiring long testing times and trained technicians.
Objective: To create a deep-learning network that could directly estimate function from structure de novo to provide an en face high-resolution map of estimated retinal sensitivity.
Design, Setting, And Participants: A cross-sectional imaging study using data collected between January 1, 2016, and November 30, 2017, from the Natural History Observation and Registry of macular telangiectasia type 2 (MacTel) evaluated 38 participants with confirmed MacTel from 2 centers.
Main Outcomes And Measures: Mean absolute error of estimated compared with observed retinal sensitivity. Observed retinal sensitivity was obtained with fundus-controlled perimetry (microperimetry). Estimates of retinal sensitivity were made with deep-learning models that learned on superpositions of high-resolution optical coherence tomography (OCT) scans and microperimetry results. Those predictions were used to create high-density en face sensitivity maps of the macula. Training, validation, and test sets were segregated at the patient level.
Results: A total of 2499 microperimetry sensitivities were mapped onto 1708 OCT B-scans from 63 eyes of 38 patients (mean [SD] age, 74.3 [9.7] years; 15 men [39.5%]). The numbers of examples for our algorithm were 67 899 (103 053 after data augmentation) for training, 1695 for validation, and 1212 for testing. Mean absolute error results were 4.51 dB (95% CI, 4.36-4.65 dB) when using linear regression and 3.66 dB (95% CI, 3.53-3.78 dB) when using the LeNet model. Using a 49.9 million-variable deep-learning model, a mean absolute error of 3.36 dB (95% CI, 3.25-3.48 dB) of retinal sensitivity for validation and test was achieved. Correlation showed a high degree of agreement (Pearson correlation r = 0.78). By paired Wilcoxon rank sum test, our model significantly outperformed these 2 baseline models (P < .001).
Conclusions And Relevance: High-resolution en face maps of estimated retinal sensitivities were created in eyes with MacTel. The maps were of unequalled resolution compared with microperimetry and were able to correctly delineate functionally healthy and impaired retina. This model may be useful to monitor structural and functional disease progression and has potential as an objective surrogate outcome measure in investigational trials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6484597 | PMC |
http://dx.doi.org/10.1001/jamanetworkopen.2018.8029 | DOI Listing |
Unlabelled: Sensory stimuli vary across a variety of dimensions, like contrast, orientation, or texture. The brain must rely on population representations to disentangle changes in one dimension from changes in another. To understand how the visual system might extract separable stimulus representations, we recorded multiunit neuronal responses to texture images varying along two dimensions: contrast, a property represented as early as the retina, and naturalistic statistical structure, a property that modulates neuronal responses in V2 and V4, but not in V1.
View Article and Find Full Text PDFMethodsX
June 2025
Assistant Professor, Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Tamil Nadu, 600062, India.
Glaucoma, a severe eye disease leading to irreversible vision loss if untreated, remains a significant challenge in healthcare due to the complexity of its detection. Traditional methods rely on clinical examinations of fundus images, assessing features like optic cup and disc sizes, rim thickness, and other ocular deformities. Recent advancements in artificial intelligence have introduced new opportunities for enhancing glaucoma detection.
View Article and Find Full Text PDFOphthalmol Glaucoma
January 2025
Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA. Electronic address:
Purpose: To investigate the impact of blood pressure (BP) on rates of retinal nerve fiber layer (RNFL) thinning in glaucomatous eyes with focal ischemic (FI) versus generalized enlargement (GE) optic disc phenotypes.
Design: Prospective cohort study.
Participants: The study included 122 eyes from 101 patients diagnosed with primary open-angle glaucoma.
J Optom
January 2025
Department of Ophthalmology, Peking University People's Hospital, Beijing, China; Eye Diseases and Optometry Institute, Beijing, China; Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China; College of Optometry, Peking University Health Science Center, Beijing, China.
Purposes: To investigate the 12-month effectiveness of Diverse Segmented Defocus Optics (DSDO) and Defocus Incorporated Multiple Segments (DIMS) spectacle lenses in a real-world clinical population in myopic and pre-myopic Chinese children.
Methods: About 364 subjects prescribed DSDO or DIMS were enrolled. Axial length (AL) and cycloplegic spherical equivalent refraction (SER) changes over 12 months were measured.
Nat Commun
January 2025
Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genova, Italy.
The lack of effective therapies for visual restoration in Retinitis pigmentosa and macular degeneration has led to the development of new strategies, such as optogenetics and retinal prostheses. However, visual restoration is poor due to the massive light-evoked activation of retinal neurons, regardless of the segregation of visual information in ON and OFF channels, which is essential for contrast sensitivity and spatial resolution. Here, we show that Ziapin2, a membrane photoswitch that modulates neuronal capacitance and excitability in a light-dependent manner, is capable of reinstating, in mouse and rat genetic models of photoreceptor degeneration, brisk and sluggish ON, OFF, and ON-OFF responses in retinal ganglion cells evoked by full-field stimuli, with reactivation of their excitatory and inhibitory conductances.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!