Methanol is a well-established carbon source and inducer for efficient protein production employing Pichia pastoris (P. pastoris) as a host on micro-, lab and industrial scale. However, due to its toxicity and flammability, there is a desire to avoid methanol while maintaining the high productivity of P. pastoris. Small scale bioreactor cultivations (0.5-5 L working volume) are commonly used to evaluate a strain and its protein production characteristics since microscale cultivation in deep well plates can be hardly controlled or relies on expensive equipment. Furthermore, traditional protocols for the cultivation and induction of P. pastoris were established for constitutive expression or methanol induction and so far, no reliable protocols were described to screen P. pastoris expression strains with derepressible promoters in (controlled and monitored) parallel cultivations. To simplify such initial cultivations to characterize and compare new protein production strains, we established a simple shake flask cultivation system for methanol free expression that simulates bioreactor conditions including a constant slow glycerol feed and online monitoring, thereby coming closer to the real conditions in bioreactors compared to mostly applied small scale batch cultivations. To drive recombinant protein expression in P. pastoris, the carbon source repressed promoters PDC and PDF were applied. Polymer discs with embedded carbon source, releasing a constant amount of glycerol, assured a feed rate delivering the necessary energy for maintaining the promoters active while keeping the biomass generation low.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/58589 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
The fate and degradation of organic matter in aquatic systems is a vital link in nutrient cycling and sedimentation processes influenced by exogenous and endogenous factors, such as inputs from upstream sources, sediment suspension, and the decomposition of aquatic organisms. The interplay of organic carbon, microbes, and environmental factors shapes the distribution and degradation of organic matter. Characterizing the source distribution of sedimentary organic matter in aquatic systems using novel proxies can unravel new insights into the mechanisms that control its dispersal, preservation and fate, which is essential to understanding the global carbon and nitrogen cycles.
View Article and Find Full Text PDFCurr Environ Health Rep
January 2025
Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, 104 Mason Farm Rd., Chapel Hill, NC, 27514, USA.
Purpose Of Review: A major contributor to household air pollution (HAP) in sub-Saharan Africa (SSA) is unclean cooking fuel. Improved cookstove technology (ICT) interventions have been promoted as a solution, but their impacts on health are unclear. Our aim is to conduct a systematic review to explore the impacts of ICT interventions on health outcomes in SSA.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
The fermentative production of valuable chemicals from lignocellulosic feedstocks has attracted considerable attention. Although Saccharomyces cerevisiae is a promising microbial host, it lacks the ability to efficiently metabolize xylose, a major component of lignocellulosic feedstocks. The xylose oxidative pathway offers advantages such as simplified metabolic regulation and fewer enzymatic steps.
View Article and Find Full Text PDFNano Lett
January 2025
Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance of Research and Technology, 1 CREATE Way, #03-06, Singapore 138602, Singapore.
Fluorescent nanosensors operating have shown recent success toward informing basic plant biology and agricultural applications. We developed near-infrared (NIR) fluorescent nanosensors using the Corona Phase Molecular Recognition (CoPhMoRe) technique that distinguish Fe(II) and Fe(III) species with limit of detection as low as 10 nM. An anionic poly(p-phenyleneethynylene) (PPE) polyelectrolyte wrapped single-walled carbon nanotube (SWNT) shows up to 200% turn-on and 85% turn-off responses to Fe(II) and Fe(III), respectively, allowing spatial and temporal analysis of iron uptake in both foliar and root-to-shoot pathways.
View Article and Find Full Text PDFmSystems
January 2025
Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Gluconeogenesis, the reciprocal pathway of glycolysis, is an energy-consuming process that generates glycolytic intermediates from non-carbohydrate sources. In this study, we demonstrate that robust and efficient gluconeogenesis in bacteria relies on the allosteric inactivation of pyruvate kinase, the enzyme responsible for the irreversible final step of glycolysis. Using the model bacterium as an example, we discovered that pyruvate kinase activity is inhibited during gluconeogenesis via its extra C-terminal domain (ECTD), which is essential for autoinhibition and metabolic regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!