Fatty acid-binding protein 3 (FABP3), a low-molecular-weight protein, participates in lipid transportation, storage, signaling transduction, oxidation, and transcription regulation. Here, we investigated the expression and function of FABP3 in ischemic heart diseases and explored the mechanisms by which FABP3 affected remodeling after myocardial infarction (MI). We showed that ischemic or hypoxic conditions upregulated FABP3 expression in vivo and in vitro. Notably, overexpression of FABP3 induced more myocyte apoptosis in the infarction and border areas and aggravated cardiac dysfunction, with lower left ventricular ejection fraction. Meanwhile, overexpression of FABP3 drastically promoted death and apoptosis of neonatal rat ventricular cardiomyocytes under hypoxia. Furthermore, deficiency of FABP3 exerted protective effects against ischemic heart injuries by decreasing cardiac myocyte apoptosis and heart remodeling after MI. We found that overexpression of FABP3 upregulated the phosphorylation of MAPK signaling pathway and decreased phosphorylated Akt levels, which may account for the augmentation of apoptosis and remodeling after MI. To the best of our knowledge, this is the first study to demonstrate that deficiency of FABP3 would protect cardiac myocytes from apoptosis and alleviate cardiac remodeling after MI, suggesting FABP3 as a potential target to preserve cardiac function after MI. NEW & NOTEWORTHY It is an undisputable fact that myocyte apoptosis plays a crucial role in cardiac remodeling and the development of heart failure after myocardial infarction. Here, fatty acid-binding protein 3 deficiency improved myocardial structural remodeling and function by decreasing cell apoptosis and regulating MAPK signaling pathways. We suppose that fatty acid-binding protein 3 may be regarded as a potential intervention approach to preserve cardiomyocytes during myocardial infarction.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00360.2018DOI Listing

Publication Analysis

Top Keywords

fatty acid-binding
16
acid-binding protein
16
myocyte apoptosis
16
ischemic heart
12
myocardial infarction
12
overexpression fabp3
12
fabp3
10
cardiac myocyte
8
apoptosis
8
deficiency fabp3
8

Similar Publications

Loss of Mfn1 but not Mfn2 enhances adipogenesis.

PLoS One

December 2024

Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom.

Objective: A biallelic missense mutation in mitofusin 2 (MFN2) causes multiple symmetric lipomatosis and partial lipodystrophy, implicating disruption of mitochondrial fusion or interaction with other organelles in adipocyte differentiation, growth and/or survival. In this study, we aimed to document the impact of loss of mitofusin 1 (Mfn1) or 2 (Mfn2) on adipogenesis in cultured cells.

Methods: We characterised adipocyte differentiation of wildtype (WT), Mfn1-/- and Mfn2-/- mouse embryonic fibroblasts (MEFs) and 3T3-L1 preadipocytes in which Mfn1 or 2 levels were reduced using siRNA.

View Article and Find Full Text PDF

An electrochemiluminescence biosensor based on silver-cysteine nanorod as an emitter and AgNP-decorated FeMoO as a signal amplifier for sensitive detection of heart-type fatty acid binding protein.

Mikrochim Acta

December 2024

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.

An electrochemiluminescence (ECL) immunosensor was developed for the highly sensitive and specific detection of heart-type fatty acid binding protein (H-FABP) and the rapid diagnosis of acute myocardial infarction (AMI). H-FABP is a biomarker that is highly specific to cardiac tissue and is associated with a range of cardiac diseases. Following myocardial injury, the rate of increase in H-FABP levels is greater than that observed for myoglobin and troponin.

View Article and Find Full Text PDF

Differences in Blood and Cerebrospinal Fluid Between Parkinson's Disease and Related Diseases.

Cell Mol Neurobiol

December 2024

Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

It is difficult to distinguish Parkinson's disease (PD) in the early stage from those of various disorders including atypical Parkinson's syndrome (APS), vascular parkinsonism (VP), and even essential tremor (ET), because of the overlap of symptoms. Other, more challenging problems will arise when Parkinson's disease develops into Parkinson's disease dementia (PDD) in the middle and late stages. At this time, the differential diagnosis of PDD and DLB becomes thorny.

View Article and Find Full Text PDF

Background: Cardiovascular biomarkers are crucial for monitoring cancer therapy-related cardiac toxicity, but the effects on early stage are still inadequate. To screen biomarkers in patients with breast cancer who receive anthracycline-containing chemotherapy, we studied the behavior of six biomarkers during chemotherapy and their association with chemotherapy-related cardiac toxicity.

Methods: In a prospective cohort of 73 patients treated with anthracycline-containing chemotherapy, soluble suppression of tumorigenicity 2 (sST2), high-sensitivity cardiac troponin T, N-terminal pro-B-type natriuretic peptide (NT-proBNP), myoglobin, creatine kinase isoenzyme MB, and heart-fatty acid binding protein were measured at baseline, during chemotherapy cycle (C1-C6).

View Article and Find Full Text PDF

Fatty acid binding protein 4 (FABP4) is highly expressed in adipocytes. Lipolysis, caused by an elevated adrenergic input, has been suggested to contribute to elevated serum FABP4 levels in patients with cardiovascular diseases. However, the relationship between the serum FABP4 and efferent sympathetic nerve activity remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!