A new mode of reactivity of 1,3-diynes in rhodium-catalyzed oxidative annulation reactions has enabled the rapid assembly of extended π systems from readily available picolinamide derivatives. The process involves a double C-H bond activation and the iterative annulation of two 1,3-diyne units, with each alkyne moiety engaged in an orchestrated insertion sequence with high regiocontrol, leading to the formation of five new C-C bonds and the construction of four fused rings in a single operation. Either isoquinoline-1-carboxamides or fused polycyclic systems can be accessed by a switch in the regioselectivity of the second diyne insertion depending on the reaction conditions. DFT theoretical calculations have elucidated that the cooperative participation of both rhodium and copper in substrate activation, favored in the presence of excess of the copper(II) salt, is key to such a reversal of regioselectivity and subsequent multiple cyclization leading to fused polycyclic products. The role of copper was found to be essential in assisting both multiple insertion and rhodium-walking sequences, with the implication of intermediates with a Rh-Cu bond (2.60 Å).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201900162 | DOI Listing |
Molecules
January 2025
School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan.
Oxazole, a versatile and significant heteroarene, serves as a bridge between synthetic organic chemistry and applications in the medicinal, pharmaceutical, and industrial fields. Polycyclic aromatic compounds with amino groups substituted at the 2-position of an oxazole, such as 2-aminonaphthoxazoles, are expected to be functional probes, but their synthetic methods are extremely limited. Herein, we describe electrochemical reactions of 3-amino-2-naphthol or 3-amino-2-anthracenol and isothiocyanates in DMSO, using a graphite electrode as an anode and a platinum electrode as a cathode in the presence of potassium iodide (KI), which afford -arylnaphtho- and -arylanthra[2,3-]oxazol-2-amines via cyclodesulfurization.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India.
Charge transfer (CT) states in polycyclic aromatic hydrocarbons play crucial roles in determining their electronic properties and their potential applications in organic electronics. In this work, we investigate the nature of the excited states in monomers and π-stacked dimers of azulene-fused naphthalene and anthracene systems, focusing on the interplay between structure and excited-state properties. Four different isomers for azulene-fused naphthalene (, , , and ) and anthracene (, , , and ) are considered.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China.
Two series of polycyclic aromatic hydrocarbon isomers ( and , and and ) were designed and synthesized by isomerically fusing phenanthrene with thiophene and thieno[3,2-]thiophene, respectively. All of the new target molecules were confirmed by single-crystal X-ray analysis, and it was found that the solid-state packing can be effectively modulated through a combination of π-extended and isomeric fused strategies. Meanwhile, compared with thiophene ring-terminated isomers and , both having a V-shaped geometry and showing no obvious self-assembly behavior, π-extended unit thieno[3,2-]thiophene-terminated isomer displays a V-shaped structure with moderate self-assembly properties and isomer exhibits a C-shaped configuration with further enhanced self-assembly properties.
View Article and Find Full Text PDFChemphyschem
January 2025
Institute of Molecular Science Marseille, Département de chimie, FRANCE.
Electron delocalization is studied in the ground singlet and first excited triplet states of azulene-containing helicenes. After showing that the compounds we study can be synthesized, we show that they exhibit a charge separation in the ground state, which does not appear in their triplet excited state. Then, magnetically induced properties (IMS3D and ACID) and electron density decomposition methods (EDDB) are used to rationalize aromaticity in these systems.
View Article and Find Full Text PDFChemistry
January 2025
Okayama Daigaku Daigakuin Shizen Kagaku Kenkyuka, Division of Applied Chemistry, JAPAN.
The Scholl reaction has been used to synthesize a variety of polycyclic aromatic hydrocarbons, where 1,2-aryl shifts have sometimes occurred to yield unique rearrangement products. However, such 1,2-aryl shifts are often uncontrollable, and the selective and divergent synthesis with or without rearrangement is desired. Here, we achieved the control of the rearrangement in the Scholl reaction of carbazoles by the N-substituents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!