Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Topological entanglements in biopolymers could drive them to certain internal statics and dynamics with important implications for biological functions. In this study, by means of molecular dynamics simulations, we demonstrate that the minimal crossing pattern of a braid plays a major role in its structural and dynamical properties; the braid consists of a knotted ring and an interlocked entwined unknotted polymer ring. In particular, we show that depending on the bending rigidity of the chains, the conformational energy of the braid can be either lower or higher than the unlocked polymer rings. Additionally, we find that a non-identical crossing pattern in the braid could distinctly enforce concerted internal conformational fluctuations between the interlocked rings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8sm02530d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!