With the aim of discovering novel IDO1 inhibitors, a combined similarity search and molecular docking approach was employed to the discovery of 32 hit compounds. Testing the screened hit compounds has led to several novel submicromolar inhibitors. Especially for compounds LVS-019 with cyanopyridine scaffold, showed good IDO1 inhibitory activity. To discover more compounds with similar structures to LVS-019, a shape-based model was then generated on the basis of it and the second-round virtual screening was carried out leading to 23 derivatives. Molecular docking studies suggested a possible binding mode of LVS-019, which provides a good starting point for the development of cyanopyridine scaffold compounds as potent IDO1 inhibitor. To improve potency of these hits, we further designed and synthesised another 14 derivatives of LVS-019. Among these compounds, LBJ-10 showed improved potency compared to the hits and displayed comparable potency to the control GDC-0919 analogue. LBJ-10 can serve as ideal leads for further modifications as IDO1 inhibitors for cancer treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6327983 | PMC |
http://dx.doi.org/10.1080/14756366.2018.1480614 | DOI Listing |
Curr Top Med Chem
November 2024
Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata 700053, West Bengal, India.
Cancer involves the uncontrolled, abnormal growth of cells and affects other tissues. Kinase has an impact on proliferating the cells and causing cancer. For the purpose of treating cancer, PIM kinase is a potential target.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
September 2024
Laboratory of Synthesis of Molecules with Biological Interest, University of Constantine 1, Constantine, Algeria.
3-Cyanopyridine derivatives are known for exhibiting excellent anticancer activity due to their strong capability to inhibit various biological targets, including Pim-1 kinase, survivin, and tubulin polymerization. On the other hand, N-acylhydrazones (NAH) are known to be a very versatile motif in medicinal chemistry and drug design. Based on these data, we report in this paper, the synthesis of novel 3-cyanopyridines incorporating N-acyl hydrazine scaffold, the evaluation of their cytotoxicity on the breast (MCF-7) and ovarian (A-2780) cancer cell lines and their antioxidant properties.
View Article and Find Full Text PDFOrg Lett
April 2024
School of Chemistry, University College Dublin, Science Centre South, Dublin 4, Ireland.
Herein we disclose a telescoped flow strategy to access electronically differentiated bisaryl ketones as potentially new and tunable photosensitizers containing both electron-rich benzene systems and electron-deficient pyridyl moieties. Our approach merges a light-driven (365 nm) and catalyst-free reductive arylation between aromatic aldehydes and cyanopyridines with a subsequent oxidation process. The addition of electron-donating and withdrawing substituents on the scaffold allowed effective modification of the absorbance of these compounds in the UV-vis region, while the continuous flow process affords high yields, short residence time, and high throughput.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2023
College of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, PR China.
Excited-state intermolecular proton transfer (inter-ESPT) fluorescent probes responsive to specific bioactive molecules should be greatly promising for protein sensing, DNA mutation simulating and cellular process regulating. However, the inter-ESPT molecules are recessive ESPT fluorophores, which need the assistance of other molecules with both hydrogen-bond accepting and donating abilities to turn on the tautomeric fluorescence. Valid design strategies to create powerful inter-ESPT fluorescent probes are poorly developed, particularly for proteins as targets.
View Article and Find Full Text PDFBioorg Chem
December 2020
Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
Two novel series of 6-(4-benzamido-/4-phthalimido)-3-cyanopyridine derivatives were designed and synthesized as inhibitors of PIM-1 kinase. Based on cytotoxicity results via MTT assay against prostate carcinoma PC3, human hepatocellular carcinoma HepG2 and breast adenocarcinoma MCF-7 cell lines, the most potent cytotoxic cyanopyridine hits, 6, 7, 8, 12 and 13 were 1.5-3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!