In population genetics, the Dirichlet (also called the Balding-Nichols) model has for 20 years been considered the key model to approximate the distribution of allele fractions within populations in a multi-allelic setting. It has often been noted that the Dirichlet assumption is approximate because positive correlations among alleles cannot be accommodated under the Dirichlet model. However, the validity of the Dirichlet distribution has never been systematically investigated in a general framework. This paper attempts to address this problem by providing a general overview of how allele fraction data under the most common multi-allelic mutational structures should be modeled. The Dirichlet and alternative models are investigated by simulating allele fractions from a diffusion approximation of the multi-allelic Wright-Fisher process with mutation, and applying a moment-based analysis method. The study shows that the optimal modeling strategy for the distribution of allele fractions depends on the specific mutation process. The Dirichlet model is only an exceptionally good approximation for the pure drift, Jukes-Cantor and parent-independent mutation processes with small mutation rates. Alternative models are required and proposed for the other mutation processes, such as a Beta-Dirichlet model for the infinite alleles mutation process, and a Hierarchical Beta model for the Kimura, Hasegawa-Kishino-Yano and Tamura-Nei processes. Finally, a novel Hierarchical Beta approximation is developed, a Pyramidal Hierarchical Beta model, for the generalized time-reversible and single-step mutation processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00285-018-01325-0 | DOI Listing |
Int J Mol Sci
January 2025
Department of Women's and Children's Health, University of Padova, 35128 Padova, Italy.
Fragile X syndrome (FXS) is a genetic neurodevelopmental disorder that causes a range of developmental problems including cognitive and behavioral impairment and learning disabilities. FXS is caused by full mutations (FM) of the gene expansions to over 200 repeats, with hypermethylation of the cytosine-guanine-guanine (CGG) tandem repeated region in its promoter, resulting in transcriptional silencing and loss of gene function. Female carriers of FM are typically less impaired than males.
View Article and Find Full Text PDFCardiovasc Diabetol
January 2025
Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, No.167, Beijing, 100037, China.
Aim: Both clonal hematopoiesis of indeterminate potential (CHIP) and type 2 diabetes mellitus (T2DM) are conditions closely associated with advancing age. This study delves into the possible implications and prognostic significance of CHIP and T2DM in patients diagnosed with ST-segment elevation myocardial infarction (STEMI).
Methods: Deep-targeted sequencing employing a unique molecular identifier (UMI) for the analysis of 42 CHIP mutations-achieving an impressive mean depth of coverage at 1000 × -was conducted on a cohort of 1430 patients diagnosed with acute myocardial infarction (473 patients with T2DM and 930 non-DM subjects).
Arq Bras Cardiol
January 2025
Programa de Pós-Graduação em Alimentação, Nutrição e Saúde - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS - Brasil.
Background: The angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism (rs4340) is associated with the pathogenesis of heart failure (HF). This polymorphism may contribute to a greater propensity for severe HF and excess weight.
Objective: To evaluate adiposity, cardiac function, and their association with ACE I/D polymorphism in HF patients.
J Mol Diagn
January 2025
Labcorp, Burlington, North Carolina.
To help guide treatment decisions and clinical trial matching, tumor genomic profiling is an essential precision oncology tool. Liquid biopsy, a complementary approach to tissue testing, can assess tumor-specific DNA alterations circulating in the blood. Labcorp Plasma Complete is a next-generation sequencing, cell-free DNA comprehensive genomic profiling test that identifies clinically relevant somatic variants across 521 genes in advanced and metastatic solid cancers.
View Article and Find Full Text PDFDev Cell
January 2025
Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China. Electronic address:
Cleavage-stage arrest in human embryos substantially limits the success rate of infertility treatment, with maternal-to-zygotic transition (MZT) abnormalities being a potential contributor. However, the underlying mechanisms and regulators remain unclear. Here, by performing allelic transcriptome analysis on human preimplantation embryos, we accurately quantified MZT progression by allelic ratio and identified a fraction of 8-cell embryos, at the appropriate developmental time point and exhibiting normal morphology, were in transcriptionally arrested status.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!