A new system to study capillary permeability, the VSC (vacuum suction chamber) device has been developed to evaluate the variations of capillary permeability in postphlebitic limbs. The VSC device produces by negative pressure [obtained in a plastic chamber applied to the skin at the perimalleolar region] a wheal which disappears in normals in less than one hour. In twelve patients with moderate [superficial] venous hypertension and in twelve patients with postphlebitic limbs the time of disappearance of the wheals was significantly longer in comparison with ten normal limbs. There was also a significantly increased time of disappearance of the wheals in postphlebitic legs in comparison with those with superficial incompetence. The validation of the VSC technique with venous occlusion plethysmography (VOP) showed that the increase of time of disappearance of the wheals is well correlated with the increase of capillary permeability demonstrated by VOP. After 2 weeks treatment with Venoruton (at the dosage of 1000 mg t.i.d.) the time of disappearance of the wheal was significantly reduced in both groups of patients (while it was unchanged in normals). Laser-Doppler parameters used together with the VSC device to evaluate the microcirculatory changes associated with an altered capillary permeability also showed a significant improvement of the laser-Doppler parameters after treatment. In conclusion there is evidence by the VSC device that capillary permeability [which is abnormally increased] in chronic venous hypertension is improved [decreased] after treatment for two weeks with Venoruton. This study demonstrated also the efficacy of the VSC device to study capillary permeability and the effects of drugs active on capillary permeability.

Download full-text PDF

Source

Publication Analysis

Top Keywords

capillary permeability
32
vsc device
20
time disappearance
16
venous hypertension
12
disappearance wheals
12
permeability
8
chronic venous
8
vacuum suction
8
suction chamber
8
study capillary
8

Similar Publications

Background: Blood brain barrier (BBB) is a protective layer of cells that separates the circulatory system from the brain. Its dysfunction is one of the possible mechanisms leading to onset of Alzheimer's disease (AD), a progressive neurodegenerative disease and a leading cause of dementia worldwide. Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is a imaging technique allowing regional assessment of BBB breakdown by estimating local metrics of capillary permeability such as K-trans (volume transfer constant).

View Article and Find Full Text PDF

The blood-brain barrier (BBB) consists of a unique system of brain microvascular endothelial cells, capillary basement membranes, and terminal branches ("end-feet") of astrocytes. The BBB's primary function is to protect the central nervous system from potentially harmful or toxic substances in the bloodstream by selectively controlling the entry of cells and molecules, including nutrients and immune system components. During neuroinflammation, the BBB loses its integrity, resulting in increased permeability, mostly due to the activity of inflammatory cytokines.

View Article and Find Full Text PDF

Background: Polymerase delta-interacting protein 2 (Poldip2) is a novel regulator of vascular permeability that has been shown to be involved in aggravating blood-brain barrier (BBB) disruption following stroke; however, the underlying mechanisms are unknown. While endothelial tight junctions (TJ) are critical mediators of BBB permeability, the effect of Poldip2 on TJ function has not been elucidated yet. Here, we aim to define the mechanism by which Poldip2 mediates BBB disruption, specifically focusing on phosphorylation and stabilization of the TJ integral protein ZO-1.

View Article and Find Full Text PDF

Medullary thyroid carcinoma (MTC), a rare neuroendocrine tumor comprising 3-5% of thyroid cancers, arises from calcitonin-producing parafollicular C cells. Despite aggressive behavior, surgery remains the primary curative treatment, with limited efficacy reported for radiotherapy and chemotherapy. Recent efforts have explored the pathogenetic mechanisms of MTC, identifying it as a highly vascularized neoplasm overexpressing pro-angiogenic factors.

View Article and Find Full Text PDF

Disorders in pulmonary vascular integrity are a prominent feature in many lung diseases. Paracrine signaling is highly enriched in the lung and plays a crucial role in regulating vascular homeostasis. However, the specific local cell-cell crosstalk signals that maintain pulmonary microvascular stability in adult animals and humans remain largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!