Aging is regarded as a major risk factor for neurodegenerative diseases. Thus, a better understanding of the similarities between the aging process and neurodegenerative diseases at the cellular and molecular level may reveal better understanding of this detrimental relationship. In the present study, we mined publicly available gene expression datasets from healthy individuals and patients affected by neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, and Huntington's disease) across a broad age spectrum and compared those with mouse aging and mouse cell-type specific gene expression profiles. We performed weighted gene co-expression network analysis (WGCNA) and found a gene network strongly related with both aging and neurodegenerative diseases. This network was significantly enriched with a microglial signature as imputed from cell type-specific sequencing data. Since mouse models are extensively used for the study of human diseases, we further compared these human gene regulatory networks with age-specific mouse brain transcriptomes. We discovered significantly preserved networks with both human aging and human disease and identified 17 shared genes in the top-ranked immune/microglia module, among which we found five human hub genes , and two mouse hub genes and . Taken together, these results support the hypothesis that microglia are key players involved in human aging and neurodegenerative diseases, and suggest that mouse models should be appropriate for studying these microglial changes in human.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6353788 | PMC |
http://dx.doi.org/10.3389/fnins.2019.00002 | DOI Listing |
Front Immunol
January 2025
Department of Neurology, The Second Affiliated Hospital, Army Medical University, Chongqing, China.
Objective: To investigate the differences of clinical characteristics and treatment outcomes between paraneoplastic neurologic syndrome (PNS) patients with one high-risk antibody and patients with two high-risk antibodies.
Methods: We retrospectively analyzed the data of 51 PNS patients with high-risk antibody. Clinical data were extracted from the patients' electronic medical records.
Heliyon
January 2025
Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022, València, Spain.
Resting state electroencephalography (EEG) has proved useful in studying electrophysiological changes in neurodegenerative diseases. In many neuropathologies, microstate analysis of the eyes-closed (EC) scalp EEG is a robust and highly reproducible technique for assessing topological changes with high temporal resolution. However, scalp EEG microstate maps tend to underestimate the non-occipital or non-alpha-band networks, which can also be used to detect neuropathological changes.
View Article and Find Full Text PDFTzu Chi Med J
August 2024
Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan.
Endoplasmic reticulum (ER) is a crucial organelle associated with cellular homeostasis. Accumulation of improperly folded proteins results in ER stress, accompanied by the reaction involving triggering unfolded protein response (UPR). The UPR is mediated through ER membrane-associated sensors, such as protein kinase-like ER kinase (PERK), inositol-requiring transmembrane kinase/endoribonuclease 1α, and activating transcription factor 6 (ATF6).
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki 12622, Cairo, Egypt.
Objectives: Alzheimer's disease (AD) is one of the most common neurodegenerative diseases in people over 65. The present research aimed to investigate the potential of different dietary supplements (DS) in preventing AD in an experimental animal model and study.
Materials And Methods: Three DS containing a mixture of wheat-germ oil and black pepper extract/or turmeric extract were prepared.
Am J Stem Cells
December 2024
Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences Khorramabad, Iran.
Development and maintenance of the nervous system are governed by a scheduled cell death mechanism known as apoptosis. Very much how neurons survive and function depends on the degree of death in differentiating pseudo-neuronal cells produced from neural stem cells. Different inducers can affect the degree of death in these cells: hormones, medicines, growth factors, and others.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!