High-speed X-ray imaging of the Leidenfrost collapse.

Sci Rep

Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, United States.

Published: February 2019

AI Article Synopsis

Article Abstract

The Leidenfrost layer is characterized by an insulating vapor film between a heated surface and an ambient liquid. The collapse of this film has been canonically theorized to occur from an interfacial instability between the liquid and vapor phases. The interfacial instability alone, however, is insufficient to explain the known influence of the surface on the film collapse process. In this work, we provide visual evidence for two key mechanisms governing the film collapse: the interfacial instability, and the nucleation of vapor upon multiple non-terminal liquid-solid contacts. These results were obtained by implementing high-speed X-ray imaging of the film collapse on a heated sphere submerged in liquid-water. The X-ray images were synchronized with a second high-speed visible light camera and two thermocouples to provide insight into the film formation and film collapse processes. Lastly, the dynamic film thickness was quantified by analysis of the X-ray images. This helped assess the influence of surface roughness on the disruption of the film. The results of this work encourage further investigation into non-linear stability theory to consolidate the role of the surface on the liquid-vapor interface during the film collapse process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6367412PMC
http://dx.doi.org/10.1038/s41598-018-36603-wDOI Listing

Publication Analysis

Top Keywords

film collapse
20
interfacial instability
12
film
10
high-speed x-ray
8
x-ray imaging
8
influence surface
8
collapse process
8
x-ray images
8
collapse
7
imaging leidenfrost
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!