A single-cycle laser pulse was generated using a two-stage compressor and characterized using a pulse characterization technique based on tunnelling ionization. A 25-fs, 800-nm laser pulse was compressed to 5.5 fs using a gas-filled hollow-core fibre and a set of chirped mirrors. The laser pulse was further compressed, down to the single-cycle limit by propagation through multiple fused-silica plates and another set of chirped mirrors. The two-stage compressor mitigates the development of higher-order dispersion during spectral broadening. Thus, a single-cycle pulse was generated by compensating the second-order dispersion using chirped mirrors. The duration of the single-cycle pulse was 2.5 fs, while its transform-limited duration was 2.2 fs. A continuum extreme ultraviolet spectrum was obtained through high-harmonic generation without applying any temporal gating technique. The continuum spectrum was shown to have a strong dependence on the carrier-envelope phase of the laser pulse, confirming the generation of a single-cycle pulse.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6367432PMC
http://dx.doi.org/10.1038/s41598-018-38220-zDOI Listing

Publication Analysis

Top Keywords

single-cycle pulse
16
laser pulse
16
two-stage compressor
12
chirped mirrors
12
pulse
9
generation single-cycle
8
tunnelling ionization
8
pulse generated
8
pulse compressed
8
set chirped
8

Similar Publications

We report on continuous high-harmonic generation (HHG) at 1 kHz repetition rate from a liquid-sheet plasma mirror driven by relativistic-intensity near-single-cycle light transients. Through precise control of both the surface plasma density gradient and the driving light waveform, we can produce highly stable and reproducible extreme ultraviolet spectral quasi-continua, expected to correspond to the generation of stable kHz-trains of isolated attosecond pulses in the time domain. This confirms the exciting potential of liquid-sheet targets as one of the building blocks of future high-power attosecond lasers.

View Article and Find Full Text PDF

This study investigates the pulse compression technique to improve the performance of magneto-acousto-electrical tomography (MAET) with magnetic field measurements through numerical studies. Emphasizing the effects of specific coil configuration on MAET measurements, the study conducts evaluations using a linear phased array (LPA) transducer and numerical breast models with tumor inclusion. It provides feasibility and a detailed comparative analysis of various excitations, including linear frequency modulated (LFM), Barker code, and Golay code excitations in MAET.

View Article and Find Full Text PDF

High-field THz sources with peak field strengths exceeding MV/cm are essential for nonlinear THz spectroscopy and coherent control of matter on ultrafast time scales. Two-color femtosecond laser plasma sources employing long filamentation have been reported as providing single-cycle, >MV/cm fields, with multi-decade spanning bandwidth and polarization control, making them promising sources for such experiments. In this work, we report the observation of spatiotemporal spreading of the THz pulse when standard off-axis parabolic mirrors are used for collection and focusing of long filament plasma-based THz pulses.

View Article and Find Full Text PDF

Assessment of arteriosclerosis based on lognormal fitting.

Physiol Meas

November 2024

State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.

. Pulse pressure waves contain information about human physiology. There is a need for a simple, accurate way to know cardiovascular health in the clinic, so as to realize the implementation of convenient and effective early health monitoring for patients with arteriosclerosis.

View Article and Find Full Text PDF

This study demonstrates the potential to generate a soft x-ray single-cycle attosecond pulse using a single-cycle mid-infrared pulse from advanced dual-chirped optical parametric amplification (DC-OPA). A super continuum high harmonic (HH) spectrum was generated in argon (80-160 eV) and neon (150-270 eV). The experimental spectra reasonably agree with those calculated by the strong-field approximation model and Maxwell's equations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!