Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Two-dimensional (2D) transition metal dichalcogenide (2D TMD) layers present an unusually ideal combination of excellent opto-electrical properties and mechanical tolerance projecting high promise for a wide range of emerging applications, particularly in flexible and stretchable devices. The prerequisite for realizing such opportunities is to reliably integrate large-area 2D TMDs of well-defined dimensions on mechanically pliable materials with targeted functionalities by transferring them from rigid growth substrates. Conventional approaches to overcome this challenge have been limited as they often suffer from the non-scalable integration of 2D TMDs whose structural and chemical integrity are altered through toxic chemicals-involved processes. Herein, we report a generic and reliable strategy to achieve the layer-by-layer integration of large-area 2D TMDs and their heterostructure variations onto a variety of unconventional substrates. This new 2D layer integration method employs water only without involving any other chemicals, thus renders distinguishable advantages over conventional approaches in terms of material property preservation and integration size scalability. We have demonstrated the generality of this method by integrating a variety of 2D TMDs and their heterogeneously-assembled vertical layers on exotic substrates such as plastics and papers. Moreover, we have verified its technological versatility by demonstrating centimeter-scale 2D TMDs-based flexible photodetectors and pressure sensors which are difficult to fabricate with conventional approaches. Fundamental principles for the water-assisted spontaneous separation of 2D TMD layers are also discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6367468 | PMC |
http://dx.doi.org/10.1038/s41598-018-37219-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!