The human body absorbs and loses heat largely through infrared radiation centering around a wavelength of 10 micrometers. However, neither our skin nor the textiles that make up clothing are capable of dynamically controlling this optical channel for thermal management. By coating triacetate-cellulose bimorph fibers with a thin layer of carbon nanotubes, we effectively modulated the infrared radiation by more than 35% as the relative humidity of the underlying skin changed. Both experiments and modeling suggest that this dynamic infrared gating effect mainly arises from distance-dependent electromagnetic coupling between neighboring coated fibers in the textile yarns. This effect opens a pathway for developing wearable localized thermal management systems that are autonomous and self-powered, as well as expanding our ability to adapt to demanding environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.aau1217 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!