Immobilization of plasmids in bacterial nanocellulose as gene activated matrix.

Carbohydr Polym

Pharmaceutical Technology and Biopharmacy, Friedrich Schiller University Jena, Lessingstraße 8, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany. Electronic address:

Published: April 2019

The synergy of the local delivery of nucleic acids using a hydrogel-based gene activated matrix (GAM) might support regenerative processes on a genetic level by concurrently providing a cell-friendly microenvironment. To investigate bacterial nanocellulose (BNC) as GAM, two plasmids (pSV-β-Gal and pGL3) were incorporated by reswelling and injection techniques forming matrix and core-shell systems as determined by SEM and staining experiments. The release was found to be dependent on the type of BNC, the plasmid and the loading technique, and lasted over at least 20 days. No morphological or mechanical changes of the BNC due to the presence of plasmids were observed. Immobilized plasmids especially in the matrix systems were protected against enzymatic degradation by maintaining the high biocompatibility of BNC and transfection efficacy of the plasmids. These results indicate that BNC can be used as a promising and renewable carrier for the application as local gene delivery system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2019.01.009DOI Listing

Publication Analysis

Top Keywords

bacterial nanocellulose
8
gene activated
8
activated matrix
8
bnc
5
immobilization plasmids
4
plasmids bacterial
4
nanocellulose gene
4
matrix
4
matrix synergy
4
synergy local
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!