Here we report a new simple method for fabrication of supermacroporous beads and monoliths via cross-linking of carboxyalkylated chitosan derivatives with hexamethylene diisocyanate in aqueous solution at subzero temperature. These materials provide high filtration rate and good mass-transfer that in combination with high binding capacity toward metal ions allows their application as a universal platform for fabrication of composite catalysts, sorbents, and metal-affine chromatography stationary phases. Using N-(2-carboxyethyl)chitosan (CEC), we have demonstrated that optimum chitosan carboxylation degree for cryogels synthesis is close to 1.0. Cu(II)-chelated CEC cryogels have shown high efficiency as metal-affinity sorbents for ciprofloxacin recovery. Co(II)-chelated CEC cryogels have been used for fabrication of Co(II) ferrocyanide-containing composite with the distribution coefficient for Cs of 140,000 ml/g and the adsorption capacity of ˜1 mmol/g. Composite Pd-catalysts supported on CEC cryogel provided tenfold higher reaction rate in 4-nitrophenol reduction in comparison with Pd-catalyst supported on chitosan beads.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2018.12.094 | DOI Listing |
Front Nutr
December 2024
Department of Gastroenterology, "Grigore T. Popa" University of Medicine and Pharmacy, Iași, Romania.
Background/objectives: Schizophrenia is a complex mental disorder influenced by genetic and environmental factors, including dietary habits. Oxidative stress and inflammation play a crucial role in the pathophysiology of schizophrenia. Emerging research suggests that diet may affect schizophrenia through different biological mechanisms beyond oxidative stress and inflammation.
View Article and Find Full Text PDFBioprocess Biosyst Eng
December 2024
Department of Biological Engineering, Inha University, 100 Inha-Ro, Nam-Gu, Incheon, 22212, Republic of Korea.
Experimental models for exploring abnormal brain blood vessels, including ischemic stroke, are crucial in neuroscience; recently, significant attention has been paid to artificial tissues through tissue engineering. Nanofibers, although commonly used as tissue engineering scaffolds, undergo structural deformations easily, making it challenging to create uniform tissue, especially for the smallest-diameter ones such as perforating arteries. This study focused on the development of a platform capable of reconstructing structurally and functionally replicated perforating arteries.
View Article and Find Full Text PDFACS Sens
December 2024
Hahn-Schickard, 79110 Freiburg, Germany.
Epidemic infections and spreading antibiotic resistance require diagnostic tests that can be rapidly adopted. To reduce the usually time-consuming adaptation of molecular diagnostic tests to changing targets, we propose the novel approach of a repurposable sensing electrode functionalization with a universal, target-independent oligonucleotide probe. In the liquid phase covering the electrode, the target sequence is amplified by MD LAMP (mediator-displacement loop-mediated isothermal amplification) releasing a generic methylene blue-labeled mediator, which specifically hybridizes to the solid-phase probe.
View Article and Find Full Text PDFBioact Mater
April 2025
Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, China.
Repair of osteoporotic bone defects (OBD) remains a clinical challenge due to dysregulated bone homeostasis, characterized by impaired osteogenesis and excessive osteoclast activity. While drug-loaded 3D-printed scaffolds hold great potential in the restoration of bone homeostasis for enhanced OBD repair, achieving the controlled release and targeted delivery of drugs in a 3D-printed scaffold is still unmet. Herein, we developed an electrostatic encapsulation strategy to motivate 3D-printed polyelectrolyte scaffolds (APS@P) with bone-targeting liposome formulation of salvianolic acid B (SAB-BTL).
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
Ribonucleoprotein (RNP)-based CRISPR/Cas9 genome editing holds great potential for the treatment of choroidal neovascularization (CNV), which however, is challenged by the lack of efficient cytosolic protein delivery tools. Herein, reversibly-phosphorylated pro-proteins (P-proteins) with conjugated adenosine triphosphate (ATP) tags are engineered and coupled with a membrane-penetrating, guanidine-enriched, α-helical polypeptide (GP) to mediate robust and universal cytosolic delivery. GP forms salt-stable nanocomplexes (NCs) with P-proteins via electrostatic interaction and salt bridging, and the helix-assisted, strong membrane activities of GP enabled efficient cellular internalization and endolysosomal escape of NCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!