Circularly polarized extreme ultraviolet (XUV) radiation is highly interesting for investigation of chirality-sensitive light-matter interactions. Recent breakthroughs have enabled the generation of such light sources via high harmonic generation (HHG) from rare gases. There is a growing interest in extending HHG medium from gases to solids, especially to 2D materials, as they hold great promise to develop ultra-compact solid-state photonic devices and provide insights into electronic properties of the materials themselves. However, so far reported, HHG in graphene driven by terahertz to mid-infrared fields generates only low harmonic orders, and no harmonics driven by circularly polarized lasers have been reported. Here, using first-principles simulations within a time-dependent density-functional theory framework, we show that it is possible to generate HHG extending to the XUV spectral region in monolayer extended graphene excited by near-infrared lasers. Moreover, we demonstrate that a single circularly polarized driver is enough to ensure HHG in graphene with circular polarization. The corresponding spectra reflect the six-fold rotational symmetry of the graphene crystal. Extending HHG in graphene to the XUV spectral regime and realizing circular polarization represent an important step toward the development of novel nanoscale attosecond photonic devices and numerous applications, such as spectroscopic investigation and nanoscale imaging of ultrafast chiral and spin dynamics in graphene and other 2D materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.27.003761 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!