In this paper, we investigate laser emission at 3.4μm in heavily-erbium-doped fluoride fibers using dual-wavelength pumping. To this extent, a monolithic 7 mol% erbium-doped fluoride fiber laser bounded by intracore fiber Bragg gratings at 3.42 μm is used to demonstrate a record efficiency of 38.6 % with respect to the 1976 nm pump. Through numerical modeling, we show that similar laser performances at 3.4 μm can be expected in fluoride fibers with erbium concentrations ranging between 1 - 7 mol%, although power scaling should rely on lightly-doped fibers to mitigate the heat load. Moreover, this work studies transverse mode-beating of the 1976 nm core pump and its role in the generation of a periodic luminescent grating and in the trapping of excitation in the metastable energy levels of the erbium system. Finally, we also report on the bistability of the 3.42 μm output power of the 7 mol% erbium-doped fluoride fiber laser.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.27.002170DOI Listing

Publication Analysis

Top Keywords

fluoride fibers
12
heavily-erbium-doped fluoride
8
mol% erbium-doped
8
erbium-doped fluoride
8
fluoride fiber
8
fiber laser
8
342 μm
8
fluoride
5
342 µm
4
µm lasing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!