Triticum mosaic virus Isolates in the Southern Great Plains.

Plant Dis

USDA-ARS, Hard Winter Wheat Genetics Research Unit, 4008 Throckmorton Hall, Manhattan, KS 66506.

Published: December 2011

In 2006, a previously unknown wheat (Triticum aestivum) virus was discovered in Western Kansas and given the name Triticum mosaic virus (TriMV). TriMV has since been found in wheat samples isolated all across the Great Plains. Even though it can infect singularly, TriMV is mostly found with Wheat streak mosaic virus (WSMV) as a co-infection. The potential for TriMV to cause economic loss is significant, but very little is known about the virus. The objective of this study was to survey the TriMV population for genetic variation by nucleotide sequencing of isolates across a geographical region. A secondary objective was to characterize the WSMV isolates that are being co-transmitted with TriMV. Fourteen different TriMV isolations were taken from locations in Texas, Oklahoma, and Kansas, and the coat protein cDNA was sequenced. Thirteen nucleotide differences were found in the TriMV isolates, of which three induce amino acid changes. WSMV isolates had 65 nucleotide changes when compared to WSMV Sydney81. Our results indicate the TriMV virus population has minimal amounts of sequence variation and no singular WSMV genotype is specifically associated with TriMV co-infection. Based on the isolates analyzed, it appears that the field population of TriMV is very homogeneous.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-04-11-0281DOI Listing

Publication Analysis

Top Keywords

mosaic virus
12
trimv
11
triticum mosaic
8
great plains
8
trimv wheat
8
wsmv isolates
8
virus
6
isolates
6
wsmv
5
virus isolates
4

Similar Publications

Suppressing Tymovirus replication in plants using a variant of ubiquitin.

PLoS Pathog

January 2025

Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada.

RNA viruses have evolved numerous strategies to overcome host resistance and immunity, including the use of multifunctional proteases that not only cleave viral polyproteins during virus replication but also deubiquitinate cellular proteins to suppress ubiquitin (Ub)-mediated antiviral mechanisms. Here, we report an approach to attenuate the infection of Arabidopsis thaliana by Turnip Yellow Mosaic Virus (TYMV) by suppressing the polyprotein cleavage and deubiquitination activities of the TYMV protease (PRO). Performing selections using a library of phage-displayed Ub variants (UbVs) for binding to recombinant PRO yielded several UbVs that bound the viral protease with nanomolar affinities and blocked its function.

View Article and Find Full Text PDF

The global human immunodeficiency virus 1 (HIV-1) pandemic is driven by the extraordinary genetic diversity of the virus, largely resulting from frequent recombination events. These events generate circulating recombinant forms (CRFs) and unique recombinant forms, which significantly contribute to the complexity of HIV-1 epidemiology, especially within key populations, such as men who have sex with men (MSM). Here, we identified three novel HIV-1 recombinant strains consisting of the CRF01_AE and CRF07_BC subtypes from HIV-positive MSM in Baoding City, Hebei Province, China.

View Article and Find Full Text PDF

Wheat viruses are major yield-reducing factors, with mixed infections causing substantial economic losses. Determining field virus populations is crucial for effective management and developing virus-resistant cultivars. This study utilized the high-throughput Oxford Nanopore sequencing technique (ONT) to characterize wheat viral populations in major wheat-growing counties of Kansas from 2019 to 2021.

View Article and Find Full Text PDF

A Survey of Wild Indigenous Orchid Populations in Western Australia Reveals Spillover of Exotic Viruses.

Viruses

January 2025

School of Medical, Molecular and Forensic Sciences, College of Environmental and Life Sciences, Murdoch University, 90 South Street, Perth 6150, Australia.

is a terrestrial orchid endemic to southwestern Australia. The virus status of has not been studied. Eighty-three samples from 16 populations were collected, and sequencing was used to identify RNA viruses from them.

View Article and Find Full Text PDF

Maize lethal necrosis (MLN) is a significant threat to food security in Sub-Saharan Africa (SSA), with limited commercial inbred lines displaying tolerance. This study analyzed the transcriptomes of four commercially used maize inbred lines and a non-adapted inbred line, all with varying response levels to MLN. RNA-Seq revealed differentially expressed genes in response to infection by maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV), the causative agents of MLN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!