Botrytis leaf blight (BLB) of onion (Allium cepa) is caused by Botrytis squamosa. The disease has been reported on onion crops in several of the onion production areas of the world including North and South America, Europe, Asia, and Australia, although it is not a problem in arid production regions such as the western United States. In eastern Canada, the disease is generally present every year and is especially severe on cultivars of yellow globe onion. The pathogen biology and disease epidemiology have been intensively researched. Over the last few decades, in the organic soil area of Quebec, extensive research effort has been devoted to the development and evaluation of predictive models and disease management strategies. There has been an active integrated pest management program for onions since the early 1980s, and scouting for disease has played a major role in disease management. In this article, the story of BLB management in eastern Canada over a period of two decades is summarized.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-11-10-0797DOI Listing

Publication Analysis

Top Keywords

botrytis leaf
8
leaf blight
8
eastern canada
8
disease management
8
disease
6
management
5
onion
5
management botrytis
4
blight onion
4
onion québec
4

Similar Publications

Bioassay-Guided Fractionation Networking for Discovery of Biofungicides from Cultivated .

Int J Mol Sci

December 2024

Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain.

Considering the detrimental impacts of the current pesticides on the biotic components of the biosphere, the development of novel pesticides is vital. Plant-derived biopesticides have emerged as popular alternatives to create a safer and more sustainable agriculture model. This study aims to validate the previous bioguided fractionation of endemic Canary Islands sage, , as a potential source of botanical pesticides using a cultivation process.

View Article and Find Full Text PDF

Hydroponic systems are examples of controlled environment agriculture (CEA) and present a promising alternative to traditional farming methods by increasing productivity, profitability, and sustainability. In hydroponic systems, crops are grown in the absence of soil and thus lack the native soil microbial community. This review focuses on fungi and oomycetes, both beneficial and pathogenic, that can colonize crops and persist in hydroponic systems.

View Article and Find Full Text PDF

Genome-wide identification of long non-coding RNA for Botrytis cinerea during infection to tomato (Solanum lycopersicum) leaves.

BMC Genomics

January 2025

The Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China.

Long non-coding RNA (lncRNA) plays important roles in animals and plants. In filamentous fungi, however, their biological function in infection stage has been poorly studied. Here, we investigated the landscape and regulation of lncRNA in the filamentous plant pathogenic fungus Botrytis cinerea by strand-specific RNA-seq of multiple infection stages.

View Article and Find Full Text PDF

Discovery, Characterization, and Application of Broad-Spectrum Antimicrobial Peptide AtR905 from as a Biocontrol Agent.

J Agric Food Chem

December 2024

Key Laboratory of Microbial Pesticides (Ministry of Agriculture and Rural Affairs), National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.

This study investigates a novel antimicrobial peptide AtR905 derived from the endophytic fungus , which was successfully expressed in , purified, and characterized, and highlighted as a promising potential biocontrol agent against various plant pathogens. The results indicated AtR905 exhibited broad-spectrum antimicrobial activities against key pathogens such as and with very low minimal inhibitory concentrations (MICs). Stability tests confirmed that AtR905 retains its antimicrobial properties under varying thermal, pH, and UV conditions.

View Article and Find Full Text PDF

LysM effectors are suppressors of chitin-triggered plant immunity in biotrophic and hemibiotrophic fungi. In necrotrophic fungi, LysM effectors might induce a mechanism to suppress host immunity during the short asymptomatic phase they establish before these fungi activate plant defenses and induce host cell death leading to necrosis. Here, we characterize a secreted LysM protein from a major necrotrophic fungus, Botrytis cinerea, called BcLysM1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!