Exclusion and eradication or management based on an integrated approach with less susceptible varieties, copper-based bactericides, and windbreaks are the two main strategies used to prevent or control citrus canker. Field tolerance or resistance to citrus canker is not found in the most important commercial sweet orange cultivars, and pathogen-derived resistance has been developed and applied in different crops to obtain resistant genotypes to plant pathogens. We describe the development of DNA primers and probes based on the type III effector genes avrXacE1, avrXacE2, avrXacE3, avrBs2, pthA4, hpaF, and XAC3090 (leucine rich protein), and their application in the evaluation of the genetic diversity of the pathogen. A total of 49 haplotypes were identified in 157 strains by Southern blot analysis. No genetic polymorphism was detected by BOX elements - and enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) analysis, nor with the genes avrBs2, XAC3090, and hpaF. Nei's genetic diversity indexes varied from 0.65 to 0.96 for subcollections of the pathogen. One or few haplotypes were most frequent in the strain collection, but several haplotypes were represented by solely one or few strains. The PthA4 probe resulted in the higher number of haplotypes identified in the Brazilian subcollections. Greater variation in the frequency of haplotypes occurred within subcollections (93.7%) than among subcollections. Only some haplotypes were genetically distant from all others, especially those originated from Rio Grande do Sul and Santa Catarina states. These bacterial effectors are widely spread in the collections and are useful for a better understanding of the host-pathogen interaction and the search for resistance genes in host and nonhost plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-04-11-0357 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!