The discovery of novel topological phases has revolutionized the way we think about electronic matter. Topologically protected states have been demonstrated for many materials, however, creating materials that exhibit desired properties often remains a challenge. For example, one of the key challenges in three dimensional topological insulators has been the realization of insulating bulk, such that the unique properties of surface states could be fully employed in electron transport applications. Further challenges are in creating materials that simultaneously exhibit states protected by various symmetries on their different surfaces, inducing magnetic exchange coupling into the topological materials, as well as potentially creating non-trivial transient electronic states. This review presents theoretical concepts and a selection of experimental results from the point view of a spectroscopist, and as such might be useful for physicists who want to get familiar with the key concepts in a self-contained form with formalism reduced to readily understandable concepts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ab052c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!