Separable neural representations of sound sources: Speaker identity and musical timbre.

Neuroimage

Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, 20742, USA; Department of Psychology, University of Maryland, College Park, MD, 20742, USA.

Published: May 2019

Human listeners can quickly and easily recognize different sound sources (objects and events) in their environment. Understanding how this impressive ability is accomplished can improve signal processing and machine intelligence applications along with assistive listening technologies. However, it is not clear how the brain represents the many sounds that humans can recognize (such as speech and music) at the level of individual sources, categories and acoustic features. To examine the cortical organization of these representations, we used patterns of fMRI responses to decode 1) four individual speakers and instruments from one another (separately, within each category), 2) the superordinate category labels associated with each stimulus (speech or instrument), and 3) a set of simple synthesized sounds that could be differentiated entirely on their acoustic features. Data were collected using an interleaved silent steady state sequence to increase the temporal signal-to-noise ratio, and mitigate issues with auditory stimulus presentation in fMRI. Largely separable clusters of voxels in the temporal lobes supported the decoding of individual speakers and instruments from other stimuli in the same category. Decoding the superordinate category of each sound was more accurate and involved a larger portion of the temporal lobes. However, these clusters all overlapped with areas that could decode simple, acoustically separable stimuli. Thus, individual sound sources from different sound categories are represented in separate regions of the temporal lobes that are situated within regions implicated in more general acoustic processes. These results bridge an important gap in our understanding of cortical representations of sounds and their acoustics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2019.01.075DOI Listing

Publication Analysis

Top Keywords

sound sources
12
temporal lobes
12
acoustic features
8
individual speakers
8
speakers instruments
8
superordinate category
8
sound
5
separable neural
4
neural representations
4
representations sound
4

Similar Publications

Underwater low-power electromagnetic transducers with Central permanent magnet integration.

J Acoust Soc Am

January 2025

College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China.

High-efficiency electromagnetic transducers are crucial for enabling the self-sustained operation of underwater electromagnetic sound sources under power-constrained conditions as noted by Hao, Xie, and Ma [Proceedings of the 2019 Western China Acoustics Academic Conference, Guangzhou, China (November 5-9, 2019)]. This paper proposes a permanent magnet drive technology to enhance the electromechanical conversion efficiency of can-type electromagnetic transducers under low-power driving conditions. The can-type transducers consist of coils, an armature, and a cylindrical magnetic core with a central pillar, similar to the pot core proposed by Cui, Xu, Xu, and Shui [Electr.

View Article and Find Full Text PDF

A platform noise dataset of various types of subway stations during all operating hours.

Sci Data

January 2025

ZheJiang Communications Investment Group Co., Ltd., ITS Branch, Hangzhou, 310000, China.

The subjective perceptions of passengers are intricately linked to the noise levels in subway stations of urban rail transit systems. In this study, comprehensive measurement was conducted on the noise environment on the platforms during operational hours at four distinct types of subway stations within an urban metro network. To ensure precise data collection, four different noise and sound pressure measurement points were strategically positioned in the middle and at both ends of each station platform.

View Article and Find Full Text PDF

An overview of sound source localization based condition monitoring robots.

ISA Trans

December 2024

Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK. Electronic address:

As artificial intelligence advances and demand for cost-effective equipment maintenance in various fields increases, it is worth insightful research on utilizing robots embedded with sound source localization (SSL) technology for condition monitoring. Combining the two techniques has significant advantages, which are conducive to further classifying and tracking abnormal sources, thereby enhancing system performance at a lower cost. The paper provides an overview of current acoustic-based robotic techniques for condition monitoring, highlights the common SSL methods, and finds that localization performance heavily depends on signal quality.

View Article and Find Full Text PDF

The presence of trace metals (TMs) in river systems at certain levels can cause toxicity and pose significant risks to human health. In this study, nine TMs (Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were determined by inductively coupled plasma optical emission spectrometry (ICP-OES) in water samples collected from six major rivers from southwestern Nigeria during both dry and wet seasons. Across both seasons, the mean concentrations (mg/L) ranged from 0.

View Article and Find Full Text PDF

Advances in artificial intelligence (AI), machine learning, and publicly accessible language model tools such as ChatGPT-3.5 continue to shape the landscape of modern medicine and patient education. ChatGPT's open access (OA), instant, human-sounding interface capable of carrying discussion on myriad topics makes it a potentially useful resource for patients seeking medical advice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!