Inherited cardiomyopathies (ICs) are a major cause of heart disease. Given their marked clinical and genetic heterogeneity, the content and clinical utility of IC multi-gene panels has been the topic of continuous debate. Our genetics diagnostic laboratory has been providing clinical diagnostic testing for ICs since 2012. We began by testing nine genes and expanded our panel by fivefold in 2015. Here, we describe the implementation of a cost-effective next-generation sequencing (NGS)-based assay for testing of IC genes, including a protocol that minimizes the amount of Sanger sequencing required to confirm variants identified by NGS, which reduces the cost and time of testing. The NGS assay was developed for the simultaneous analysis of 45 IC genes and was assessed for the impact of panel expansion on variant detection, turnaround time, and cost of testing in a cohort of 993 patients. The assay led to a considerable reduction in test cost and turnaround time. However, only a marginal increase was observed in the diagnostic yield, whereas the rate of inconclusive findings increased considerably. These findings suggest that the ongoing evaluation of gene content and monitoring of clinical utility for multi-gene tests are essential to achieve maximum clinical utility of multi-gene tests in a publicly funded health care setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmoldx.2019.01.004 | DOI Listing |
Stat Med
February 2025
Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas, USA.
Multi-gene panel testing allows efficient detection of pathogenic variants in cancer susceptibility genes including moderate-risk genes such as ATM and PALB2. A growing number of studies examine the risk of breast cancer (BC) conferred by pathogenic variants of these genes. A meta-analysis combining the reported risk estimates can provide an overall estimate of age-specific risk of developing BC, that is, penetrance for a gene.
View Article and Find Full Text PDFEur J Hum Genet
January 2025
Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, Singapore, Singapore.
The popularity of multi-gene testing has identified more families with two or more pathogenic variants (PV) in cancer predisposition genes, also known as 'MINAS' (multilocus inherited neoplasia alleles syndromes). They are at risk of suboptimal treatment and management as little on this topic is known. We conducted a systematic review of published MINAS cases within cancer predisposition genes to understand their association with more severe presentations.
View Article and Find Full Text PDFS D Med
December 2024
Sanford Health Reproductive Medicine, Fargo, North Dakota.
Background: The following case report details the genetic evaluation and treatment of a 30-year-old male with a history of asthenoteratospermia and notable abnormalities of the sperm flagella.
Methods: Genetic evaluation was performed via a multi-gene panel of genes associated with primary ciliary dyskinesia and multiple morphological abnormalities of the sperm flagella (MMAF) prior to the couple's in vitro fertilization (IVF) cycle.
Results: Genetic evaluation was performed via a multi-gene panel of genes associated with primary ciliary dyskinesia and multiple morphological abnormalities of the sperm flagella (MMAF) prior to the couple's in vitro fertilization (IVF) cycle.
Transl Cancer Res
December 2024
Department of Anorectal Surgery, the Second Hospital of Tianjin Medical University, Tianjin, China.
Background: Early detection for colorectal cancer (CRC) can enhance the patient prognosis. We aimed to validate the combined multi-gene detection in plasma of , , , and for early diagnosing of CRC in this prospective study.
Methods: Overall, 124 participants including 45 CRC patients, 8 advanced adenoma patients, 34 small polyp patients, and 37 normal controls who underwent colonoscopy were enrolled.
Breast Cancer Res
January 2025
Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, 66451, Monterrey, Nuevo León, México.
Background: Hereditary predisposition to breast and ovarian cancer syndrome (HBOC) is a pathological condition with increased cancer risk, including breast (BC), ovarian cancer (OC), and others. HBOC pathogenesis is caused mainly by germline pathogenic variants (GPV) in BRCA1 and BRCA2 genes. However, other relevant genes are related to this syndrome diagnosis, prognosis, and treatment, including TP53, PALB2, CHEK2, ATM, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!