Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Previous study has shown heterogeneous nuclear ribonucleoprotein A1(HNRNPA1) is highly expressed in various human cancers. In order to study the clinical value and potential function of HNRNPA1 in HBV-related hepatocellular carcinoma (HCC), three datasets from the GEPIA, GEO and TCGA were analyzed. HNRNPA1 expression was found to be significantly higher in HBV-positive HCC samples, which was supported with IHC validation. Both GO and KEGG analyses demonstrated that HNRNPA1 co-expressed genes were involved in translation, ribonucleoprotein complex biogenesis and assembly, ribosome biogenesis, RNA processing, RNA splicing, etc. Survival analysis showed a significant reduction in overall survival of patients with high HNRNPA1 expression from both the GSE14520 cohort and 151 patients with HBV-related HCC cohort. Furthermore, Gene set enrichment analysis (GSEA) revealed that HNRNPA1 may regulate HCC progression by influencing the cell cycle and WNT signaling pathway, etc. HNRNPA1 overexpression has diagnostic value in distinguishing between HCC and non-HCC liver tissue (AUC = 0.730). Finally, HNRNPA1 was a directly target gene of miR-22 manifested by the reduced luciferase activity and decreased HNRNPA1 expression in the cells with overexpression of miR-22. HNRNPA1 might function as an oncogene through the EGFR signaling pathway in HBV-related HCC, which has not been reported in previous studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2019.02.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!