Photostability has been a major issue for perovskite materials. Understanding the photodegradation mechanism and suppressing it are of central importance for applications. By investigating single-dot photoluminescence spectra and the lifetime of MAPbX (MA = CHNH, X = Br, I) nanocrystals with quantum confinement under different conditions, we identified two separate pathways in the photodegradation process. The first is the oxygen-assisted light-induced etching process (photochemistry). The second is the light-driven slow charge-trapping process (photophysics), taking place even in oxygen-free environment. We clarified the role of oxygen in the photodegradation process and show how the photoinduced etching can be successfully suppressed by OSTE polymer, preventing an oxygen-assisted reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.9b00143 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!