Di-(2-ethylhexyl)phosphoric acid (D2EHPA) and tributylphosphate (TBP) are two of the most studied and researched organophosphorous extractants. D2EHPA is an acidic extractant, offering both hydrogen bond donor and acceptor sites while TBP, a neutral extractant, only offers a single acceptor site per molecule. In spite of this, it is observed that 1 M D2EHPA in dodecane is a poorer extractant for water than 1 M TBP in dodecane. The objective of present work is to look into the molecular interactions that cause such behavior. Experiments were carried out with varying molar ratios of TBP and D2EHPA in the organic dodecane phase. Total extractant concentration was kept constant at 1 M with dodecane as diluent. Water extraction was quantified by measuring the moisture content of the organic phase after equilibration. H and P NMR spectra of the organic phase samples were recorded to study the change in the chemical environment upon extraction. Small angle X-ray scattering data of water saturated extractant phases were analyzed for the possibility of a reverse micellar aggregate formation. Molecular dynamics simulations could calculate free energies in quantitative agreement with experiments. Experimental and simulation studies showed that aggregation in the organic phase was promoted by the presence of water. This combined approach, of experiments and simulation, has shown that water is indispensable for the formation of ordered aggregates of extractants in nonpolar organic solvents. It is seen that, in the organic phase, around 80% of water's hydrogen bonds are with extractant molecules rather than with itself. The analysis clearly indicates that, rather than forming an aqueous core surrounded by extractant, water acts as a bridge between extractant molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.8b10831 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Universidad Complutense de Madrid Facultad de Ciencias Quimicas, Inorganic Chemistry Department, 28034, Madrid, SPAIN.
Achieving high battery performance from low-cost, easily synthesisable electrode materials is crucial for advancing energy storage technologies. Metal organic frameworks (MOFs) combining inexpensive transition metals and organic ligands are promising candidates for high-capacity cathodes. Iron-chloranilate-water frameworks are herein reported to be produced in aqueous media under mild conditions.
View Article and Find Full Text PDFNat Mater
January 2025
Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.
Printing of large-area solar panels necessitates advanced organic solar cells with thick active layers. However, increasing the active layer thickness typically leads to a marked drop in the power conversion efficiency. Here we developed an organic semiconductor regulator, called AT-β2O, to tune the crystallization sequence of the components in active layers.
View Article and Find Full Text PDFNat Commun
January 2025
CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible and stretchable organic solar cells (OSCs). Herein, we design and synthesize a series of acceptors BTA-C6, BTA-E3, BTA-E6, and BTA-E9, featuring the side chains of hexyl, and 3, 6, and 9 carbon-chain with ethyl ester end groups respectively. Benefiting from suitable phase separation and vertical phase distribution, the PM6:BTA-E3-based OSCs processed by o-xylene exhibit lower energy loss and improved charge transport characteristic and achieve a power conversion efficiency of 19.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China. Electronic address:
Herein, using 1,3,5-triformylphloroglucinol (Tp) and 4,4',4″-(1,3,5-triazine-2,4,6-triyl) tris(1,1'-biphenyl) trianiline (Ttba) as ligands, nitrogen-rich triazine unit-based covalent organic frameworks (COFs) with a suitable pore size, named TpTtba-COFs, were synthesized, and they were employed as adsorbents for the extraction and detection of three bisphenols (BPs)-BP A (BPA), BP B (BPB), and BP S (BPS)-in water. Using 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (Tapt) and 1,3,5-tris(4-aminophenyl)benzene (Tapb) ligands as substitutes for Ttba, nitrogen-rich triazine unit-based COFs with a smaller pore size and nitrogen-poor triazine unit-based COFs, named TpTapt-COFs and TpTapb-COFs, respectively, were also prepared for comparison. The adsorption performances of the three COF adsorbents with regard to the three BPs were tested.
View Article and Find Full Text PDFChemosphere
January 2025
College of Design and Engineering, National University of Singapore, Singapore, 117576, Singapore. Electronic address:
Airborne particulate matter (PM) poses significant environmental and health challenges, particularly in urban areas. This study investigated the characteristics of water-soluble organic compounds (WSOC) in PM (PM with an aerodynamic diameter of 2.5 μm or less) in Singapore, a tropical Asian city-state, over a six-month period.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!