Although type-2-induced (T2-induced) epithelial dysfunction is likely to profoundly alter epithelial differentiation and repair in asthma, the mechanisms for these effects are poorly understood. A role for specific mucins, heavily N-glycosylated epithelial glycoproteins, in orchestrating epithelial cell fate in response to T2 stimuli has not previously been investigated. Levels of a sialylated MUC4β isoform were found to be increased in airway specimens from asthmatic patients in association with T2 inflammation. We hypothesized that IL-13 would increase sialylation of MUC4β, thereby altering its function and that the β-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) would regulate the sialylation. Using human biologic specimens and cultured primary human airway epithelial cells (HAECs),we demonstrated that IL-13 increases ST6GAL1-mediated sialylation of MUC4β and that both were increased in asthma, particularly in sputum supernatant and/or fresh isolated HAECs with elevated T2 biomarkers. ST6GAL1-induced sialylation of MUC4β altered its lectin binding and secretion. Both ST6GAL1 and MUC4β inhibited epithelial cell proliferation while promoting goblet cell differentiation. These in vivo and in vitro data provide strong evidence for a critical role for ST6GAL1-induced sialylation of MUC4β in epithelial dysfunction associated with T2-high asthma, thereby identifying specific sialylation pathways as potential targets in asthma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6483602 | PMC |
http://dx.doi.org/10.1172/jci.insight.122475 | DOI Listing |
J Clin Med
January 2025
Institute of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, 3515 Miskolc, Hungary.
: Subarachnoid hemorrhage is a serious condition caused by ruptured intracranial aneurysms, resulting in severe disability mainly in young adults. Cerebral vasospasm is one of the most common complication of subarachnoid hemorrhage; thus, active prevention is key to improve the prognosis. The glycosylation of proteins is a critical quality attribute which is reportedly altered in patients diagnosed with acute ischemic stroke.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Chemistry, Faculty of Materials and Chemical Engineering, University of Miskolc, 3515 Miskolc, Hungary.
The signature of human serum IgG glycosylation is critical in the defense against pathogens. Alterations of IgG N-glycome were associated with COVID-19 (Coronavirus disease 2019) severity, although knowledge on the response to vaccination is limited. IgG N-glycome was analyzed in this study in post-COVID-19 and post-vaccination patients to reveal potential glycosylation-based alterations using hydrophilic interaction liquid chromatography (HILIC-UPLC) with fluorescence (FLR) and mass-spectrometric (MS) detection.
View Article and Find Full Text PDFCancer Lett
January 2025
Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan. Electronic address:
Protein glycosylation plays a versatile role in regulating homeostasis, such as cell migration, protein sorting, and the immune response. Drugs aimed at targeting glycosylation have strong implications for immunity enhancement, diagnosis, and cancer regression. Programmed death-ligand 1 (PD-L1), expressed in cancer or antigen-presenting cells, binds to programmed cell death protein 1 (PD-1) and suppresses T cells.
View Article and Find Full Text PDFCells
January 2025
Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK.
Osteopontin (OPN) is a sialylated phosphoprotein highly expressed in atherosclerosis and upregulated in settings of both acute and chronic inflammation. It is hypothesised that plasma levels of OPN may correlate with the presence of coronary artery disease, "CAD". This offers potential as a point-of-care testing biomarker for early diagnosis, disease monitoring, and prognosis.
View Article and Find Full Text PDFEng Life Sci
January 2025
Analytical Development & Analytical Attribute Science in Biologics Bristol Myers Squibb Devens Massachusetts USA.
This study emphasizes the critical importance of closely monitoring and controlling the sialic acid content in therapeutic glycoproteins, including EPO, interferon-γ, Orencia, Enbrel, and others, as the level of sialylation directly impacts their pharmacokinetics (PK), immunogenicity, potency, and overall clinical performance due to its influence on protein clearance via hepatic asialoglycoprotein receptors (ASGPR). The ASGPR recognizes and binds to glycoproteins exposed to terminal galactose or N-acetylgalactosamine residues, leading to receptor-mediated endocytosis. Recent studies have demonstrated that sialylation of O-linked glycan plays a role in protecting against macrophage galactose lectin (MGL)-mediated clearance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!