AI Article Synopsis

  • - This study examines the bacterial diversity in working versus nonworking high-methane natural gas pipelines in Poland, finding that the working pipeline has lower biodiversity with a dominance of Firmicutes, primarily Bacillus, while the nonworking pipeline hosts a greater variety, particularly Proteobacteria and Cyanobacteria.
  • - The chemical composition of sediments differs between the two pipelines, with the nonworking pipeline showing significant levels of iron, carbon, sulphur, and oxygen, likely influencing the microbial communities present.
  • - The research emphasizes that biocorrosion in pipelines is complex and involves various bacterial species that can either promote or mitigate corrosion, highlighting the importance of understanding microbial interactions in pipeline maintenance.

Article Abstract

This study provides a deep modern insight into the phylogenetic diversity among bacterial consortia found in working and nonworking high-methane natural gas pipelines located in Poland. The working pipeline was characterized by lower biodiversity (140-154 bacterial genera from 22 to 23 classes, depending on the source of the debris) in comparison to the off-gas pipeline (169 bacterial genera from 23 classes). The sediment recovered from the working pipeline contained mostly DNA identified as belonging to the phylum Firmicutes (66.4%-45.9% operational taxonomic units [OTUs]), predominantly Bacillus (41.4%-31.1% OTUs) followed by Lysinibacillus (2.6%-1.5% OTUs) and Clostridium (2.4%-1.8% OTUs). In the nonworking pipeline, Proteobacteria (46.8% OTUs) and Cyanobacteria (27.8% OTUs) were dominant. Over 30% of the Proteobacteria sequences showed homologies to Gammaproteobacteria, with Pseudomonas (7.1%), Enhydrobacter (2.1%), Stenotrophomonas (0.5%), and Haempohilus (0.4%) among the others. Differences were noted in terms of the chemical compositions of deposits originating from the working and nonworking gas pipelines. The deposits from the nonworking gas pipeline contained iron, as well as carbon (42.58%), sulphur (15.27%), and oxygen (15.32%). This composition can be linked to both the quantity and type of the resident microorganisms. The presence of a considerable amount of silicon (17.42%), and of aluminum, potassium, calcium, and magnesium at detectable levels, may likewise affect the metabolic activity of the resident consortia in the working gas pipeline. All the analyzed sediments included both bacteria known for causing and intensifying corrosion (e.g., Pseudomonas, Desulfovibrio, Shewanella, Serratia) and bacteria that can protect the surface of pipelines against deterioration (e.g., Bacillus). Biocorrosion is not related to a single mechanism or one species of microorganism, but results from the multidirectional activity of multiple microbial communities. The analysis presented here of the state of the microbiome in a gas pipeline during the real gas transport is a particularly valuable element of this work.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6692550PMC
http://dx.doi.org/10.1002/mbo3.806DOI Listing

Publication Analysis

Top Keywords

gas pipelines
12
gas pipeline
12
microbial communities
8
natural gas
8
consortia working
8
working nonworking
8
working pipeline
8
bacterial genera
8
genera classes
8
pipeline contained
8

Similar Publications

In this paper, we studied the diffusion characteristics and distribution patterns of gas leakage in soil from buried natural gas pipelines. The three-dimensional simulation model of buried natural gas pipeline leakage was established using Fluent software. Monitoring points of gas leakage mole fraction were set up at different locations, and the influence of buried depth and pressure factors on the mole fraction and diffusion of leaked gas was analyzed.

View Article and Find Full Text PDF

Numerical simulation study on the influence of bend diameter rate on the flow characteristics of nature gas hydrate particles.

Sci Rep

December 2024

Jiangsu Key Laboratory of Oil-Gas Storage and Transportation Technology, Changzhou University, Changzhou, 213164, Jiangsu, China.

Bend pipe is a common part of long distance pipeline. There is very important to study the flow law of hydrate particles in the bend pipe, and pipeline design will be optimized. In addition, the efficiency and safety of pipeline gas transmission will be improved.

View Article and Find Full Text PDF

Research and development of new intelligent foaming and discharging agent system.

Sci Rep

December 2024

Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan, 430100, China.

The application of classic foaming agent faces several issues, including excessive use of defoaming agent, inadequate defoaming, pipeline blockage due to silicone oil precipitation, and high development cost of the foaming agent. To address the aforementioned issues, a novel intelligent foaming agent was created. This resulted in the development of a new intelligent foaming and discharging agent system.

View Article and Find Full Text PDF

This article presents a planning framework to improve the weather-related resilience of natural gas-dependent electricity distribution systems. The problem is formulated as a two-stage stochastic mixed integer linear programing model. In the first stage, the measures for distribution line hardening, gas-fired distributed generation (DG) placement, electrical energy storage resource allocation, and tie-switch placement are determined.

View Article and Find Full Text PDF

The proposed work aims to demonstrate the significance of the plastic zone at the tip of an axial crack in a pipeline for managing Stress IntensityFactors(SIF). The three-dimensional finite element model of pressure pipeline with axial cracks was built by utilizing the Ramberg-Osgood X80 material model of pipeline. according to Von Mises yield criterion, the size of plastic zone at crack tip was determined, and the fracture parameters were calculated based on interaction integral method, the plastic stress deformation law, determination of elastic-plastic limit load and plastic correction of SIF at crack tip of pressure pipeline with axial crack were discussed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!